首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
亲环素A (CypA)是一种在生物界中广泛分布,并具有高度保守性的蛋白质,具有肽基脯氨酰顺/反异构酶活性,是免疫抑制药物环孢素A (CsA)的细胞内受体。冠状病毒是具有包膜的、单股正链RNA病毒,目前已知有7种冠状病毒可以感染人类,其中包括致命的SARS-CoV、MERS-CoV以及新型冠状病毒(SARS-CoV-2)。已有研究表明,CypA在SARS-CoV、CoV-229E、CoV-NL63以及FCoV等多种冠状病毒的复制中是必不可少的,而且CypA的抑制剂CsA及其衍生物(ALV、NIM811等)对多种冠状病毒具有明显的抑制作用,暗示CypA是潜在的抗冠状病毒药物靶点,CsA这种老药有可能是一种抗冠状病毒的药物。2019年底,新型冠状病毒突然肆虐中国,严重威胁人民生命健康并造成巨大经济损失。鉴于此,文中介绍了CypA对冠状病毒复制的影响,并阐述了其抑制剂的抗病毒作用,旨在为抗新型冠状病毒药物的研发提供科学依据及思路。  相似文献   

2.
存在于宿主细胞质中的亲环素A(Cyclophilin A,CypA)对HIV-1的感染性具有重要影响。在病毒颗粒的脱壳过程中,CypA与衣壳蛋白的相互作用可破坏病毒衣壳的稳定性,加快病毒颗粒的解装配,并将病毒RNA释放出来进行逆转录,从而促进HIV-1的增殖。阻断CypA与衣壳蛋白的相互作用可以降低HIV-1的感染性,因此CypA极有可能成为抗HIV-1药物开发的新靶点。本综述主要介绍CypA的结构及功能,并对一些具有抗HIV-1活性的CypA抑制剂做一简要介绍。  相似文献   

3.
亲环素A(cyclophylin A,CypA)是一种多功能且保守的蛋白质,广泛分布在植物、动物和微生物等生物体内,CypA蛋白是第一个被发现的免疫抑制剂环孢霉素A在细胞内的亲环素受体蛋白。CypA在蛋白折叠、免疫抑制、炎症、病毒感染和细胞凋亡等方面的功能,以及植物亲环素功能的研究进展,可为进一步开发利用CypA提供理论依据。  相似文献   

4.
脂氧素A4受体是一种经典的G蛋白偶联受体;其表达在微观上受到转录和翻译水平的调节,在宏观上受到促炎与抗炎介质的调节以及药物、年龄等其它因素的影响。该受体主要表达于白细胞,结合多种激动性配体,调节炎症反应,在炎症中具有重要作用。本综述着重介绍脂氧素A4受体在炎症中所起的作用,并对该受体的称谓进行了简单的整理。  相似文献   

5.
白细胞介素17A(interleukin-17A, IL-17A)是T辅助细胞17(Th17)分泌的关键性促炎因子,与受体结合后可激活下游信号通路,诱导多种细胞因子及趋化因子的分泌,在自身免疫性疾病、超敏反应及恶性肿瘤的发生发展过程中发挥重要作用。已有多种IL-17A单克隆抗体获得批准用于炎症性疾病的临床治疗。该文对IL-17A抗体在炎症和癌症治疗领域的研究进展进行了综述,并分析了其面临的挑战和发展趋势。  相似文献   

6.
重组人亲环素A的表达、纯化及活性测定   总被引:1,自引:0,他引:1  
将RT-PCR扩增得到的亲环素A(CyPA)基因片段插入原核表达载体pET11c中,得到重组质粒pET11/CyPA,转入大肠杆菌获得高效表达。Spe-PAGE分析表明,重组CyPA表达量占菌体可溶性蛋白的40%以上。经50%硫酸铵沉淀和DEAESepharoseCL-6B柱层析可纯化重组CyPA。用糜蛋白酶偶联法测定显示重组CyPA具有肽基脯氨酸顺/反异构酶活性。  相似文献   

7.
重组人亲环素A的表达,纯化及活性测定   总被引:9,自引:0,他引:9  
将RT-PCR扩增得到的亲环素A(CyPA)基因片段插入原核表达载体pET11c中,得到重组质粒pET11/CyPA,转入大肠杆菌获得高效表达。Spe-PAGE分析表明,重组CyPA表达量占菌体可溶性蛋白的40%以上。经50%硫酸铵沉淀和DEAESepharoseCL-6B柱层析可纯化重组CyPA。用糜蛋白酶偶联法测定显示重组CyPA具有肽基脯氨酸顺/反异构酶活性。  相似文献   

8.
植物细胞亲环素研究进展   总被引:1,自引:0,他引:1  
亲环素(cyclophilin,CyP)是能够与免疫抑制药物环孢霉素A(cyclosporine A,CsA)特异结合的、高度保守的一个蛋白家族,广泛存在于细菌、酵母、植物和动物等各种有机体中。在高等植物中存在多种同工型亲环素,它们位于细胞浆、细胞核、线粒体和叶绿体等不同亚细胞分室中,参与多种重要的生理生化过程。本文从亲环素的发现、结构特点、生化特性及生物学功能等方面进行综述,并对植物亲环素研究前景进行了讨论。  相似文献   

9.
锌指蛋白A20及其对炎症反应的调控   总被引:3,自引:0,他引:3  
炎症反应是机体的一种正常免疫防御机制,一旦炎症反应超出了机体对炎症的调控阈,表现为临床常见的系统性炎症反应综合征,甚至发畏成为多器官功能障碍综合征,是导致临床危重病例死亡的重要厚因。失控性炎症反直主要由NF-κB、AP-1等核转录因子过度活化以及他们之间的协同效应立导致促炎因子大量释放昕致。A20是一种Cys2/Cys2型胞液锌指蛋白,炎症时体内昕有组织细胞都能够诱导性表达,旨在限制NF-κB和AP-1活性,是炎症反应的内源性调控蛋白和组织细胞保护性蛋白。  相似文献   

10.
茧蜂病毒(Microplitis bicoloratus bracovirus,MbBV)属于多分DNA病毒(polydnavirus,PDV)的一种,主要存在于膜翅目茧蜂科寄生蜂中,对于寄生蜂成功寄生宿主起着至关重要的作用。而亲环素A(cyclophilin A,CypA)是一种肽基脯氨酰顺反异构酶,参与免疫反应等多种细胞活动。主要探讨了茧蜂病毒在感染昆虫细胞的过程中,是否与CypA存在相关性。研究结果显示,在粉纹夜蛾(Trichoplusia ni Hübner)卵细胞系(High Five,Hi5)培养基中加入茧蜂病毒24 h后,通过PCR可扩增出与病毒基因大小一致的目的片段,表明Hi5细胞已被茧蜂病毒感染。在病毒感染细胞后,CypA的基因转录水平显著升高,其蛋白表达水平也有所增加;当沉默cypa基因或抑制CypA活性后,实时荧光定量PCR(real-time fluorescence quantitative PCR,qRT-PCR)结果显示,茧蜂病毒基因中的vank86基因转录水平显著下降;而过表达cypa基因,可使vank86基因转录水平上升。研究结果提示,茧蜂病毒在感染昆虫细胞的过程中,可能与CypA存在一定的相关性。  相似文献   

11.
The immunosuppressant drug cyclosporin A (CsA) inhibits T-cell function by blocking the phosphatase activity of calcineurin. This effect is mediated by formation of a complex between the drug and cyclophilin (CyP), which creates a composite surface able to make high-affinity contacts with calcineurin. In vitro, the CyPB/CsA complex is more effective in inhibiting calcineurin than the CyPA/CsA and CyPC/CsA complexes, pointing to fine structural differences in the calcineurin-binding region. To delineate the calcineurin-binding region of CyPB, we mutated several amino acids, located in two loops corresponding to CyPA regions known to be involved, as follows: R76A, G77H, D155R, and D158R. Compared to wild-type CyPB, the G77H, D155R, and D158R mutants had intact isomerase and CsA-binding activities, indicating that no major conformational changes had taken place. When complexed to CsA, they all displayed only reduced affinity for calcineurin and much decreased inhibition of calcineurin phosphatase activity. These results strongly suggest that the three amino acids G77, D155, and D158 are directly involved in the interaction of CyPB/CsA with calcineurin, in agreement with their exposed position. The G77, D155, and D158 residues are not maintained in CyPA and might therefore account for the higher affinity of the CyPB/CsA complex for calcineurin.  相似文献   

12.
Based on recent X-ray structural information, six site-directed mutants of human cyclophilin A (hCyPA) involving residues in the putative active site--H54, R55, F60, Q111, F113, and H126--have been constructed, overexpressed, and purified from Escherichia coli to homogeneity. The proteins W121A (Liu, J., Chen, C.-M., & Walsh, C.T., 1991a, Biochemistry 30, 2306-2310), H54Q, R55A, F60A, Q111A, F113A, and H126Q were assayed for cis-trans peptidyl-prolyl isomerase (PPIase) activity, their ability to bind the immunosuppressive drug cyclosporin A (CsA), and protein phosphatase 2B (calcineurin) inhibition in the presence of CsA. Results indicate that H54Q, Q111A, F113A, and W121A retain 3-15% of the catalytic efficiency (kcat/Km) of wild-type recombinant hCyPA. The remaining three mutants (R55A, F60A, and H126Q) each retain less than 1% of the wild-type catalytic efficiency, indicating participation by these residues in PPIase catalysis. Each of the mutants bound to a CsA affinity matrix. The mutants R55A, F60A, F113A, and H126Q inhibited calcineurin in the presence of CsA, whereas W121A did not. Although CsA is a competitive inhibitor of PPIase activity, it can complex with enzymatically inactive cyclophilins and inhibit the phosphatase activity of calcineurin.  相似文献   

13.
Characterization of the cyclophilin of Trichophyton mentagrophytes   总被引:1,自引:0,他引:1  
A genetic approach to cyclophilins in a dermatophyte, Trichophyton mentagrophytes, was carried out. The nucleotide and deduced amino acid sequences of the cyclophilin of T. mentagrophytes shared about 70% sequence similarity with those of Schizosaccharomyces pombe, Saccharomyces cerevisiae and Candida albicans. However, the first 21 amino acid and the C-terminal amino acid regions of 188 to 226 of the T. mentagrophytes cyclophilin were distinct from those of the other fungal cyclophilins. The recombinant glutathione S-transferase (GST)-T. mentagrophytes cyclophilin fusion protein produced by Escherichia coli was purified. The protease digest of the fusion protein had a molecular weight of about 13 kDa and peptidyl-prolyl cis-trans isomerase (PPI) activity. This digest protein from T. mentagrophytes was confirmed to be cyclophilin by proving PPI activity.  相似文献   

14.
To investigate the relationship between the immune system and convulsions in an animal model, we examined the effects of repeated administration with the immunosuppressant cyclosporin A on pentylenetetrazol (PTZ)-induced convulsions and the changes in the mRNA expression of its binding protein cyclophilin in the rat brain. The consecutive administration of cyclosporin A (5 mg/kg s.c., 14 days) significantly aggravated the severity of convulsions induced with PTZ 75 mg/kg i.p. Furthermore, it down-regulated the levels of cyclophilin mRNA in several brain regions and inhibited the PTZ-induced increase of hippocampal cyclophilin mRNA. Compared with the group without PTZ pretreatment or the group treated with chronic vehicle administration after the PTZ-preinjection, chronic cyclosporin A administration after the initial injection of PTZ apparently aggravated convulsions after the second PTZ injection. Interestingly, the increase in hippocampal cyclophilin mRNA observed after a single PTZ injection was not found after the second PTZ injection in the group with PTZ pretreatment. Therefore, these findings suggest that cyclosporin A administered peripherally can affect the central nervous system, and that an immune response associated with the first convulsive episode plays a key role in severity during subsequent attacks.  相似文献   

15.
Frequent outbreaks of enterovirus A71 (EVA71) occur in the Asia-Pacific area, and these are closely associated with severe neurological symptoms in young children. No effective antiviral therapy is currently available for the treatment of EVA71 infection. The development of monoclonal antibodies (mAbs) has demonstrated promise as a novel therapy for the prevention and treatment of infectious diseases. Several medical conditions have been treated using bispecific or multi-specific antibodies that recognize two or more distinct epitopes simultaneously. However, bispecific or multi-specific antibodies often encounter protein expression and product stability problems. In this study, we developed an IgG-like bispecific antibody (E18-F1) comprising two anti-EVA71 antibodies: E18 mAb and llama-derived F1 single-domain antibody. E18-F1 was demonstrated to exhibit superior binding affinity and antiviral activity compared with E18 or F1. Additionally, E18-F1 not only improved survival rate, but also reduced clinical signs in human SCARB2 receptor (hSCARB2) transgenic mice challenged with a lethal dose of EVA71. Altogether, our results reveal that E18-F1 is a simple format bispecific antibody with promising antiviral activity for EVA71.  相似文献   

16.
The cellular protein, cyclophilin A (CypA), is incorporated into the virion of the type 1 human immunodeficiency virus (HIV-1) via a direct interaction with the capsid domain of the viral Gag polyprotein. We demonstrate that the capsid sequence 87His-Ala-Gly-Pro-Ile-Ala92 (87HAGPIA92) encompasses the primary cyclophilin A binding site and present an X-ray crystal structure of the CypA/HAGPIA complex. In contrast to the cis prolines observed in all previously reported structures of CypA complexed with model peptides, the proline in this peptide, Pro 90, binds the cyclophilin A active site in a trans conformation. We also report the crystal structure of a complex between CypA and the hexapeptide HVGPIA, which also maintains the trans conformation. Comparison with the recently determined structures of CypA in complexes with larger fragments of the HIV-1 capsid protein demonstrates that CypA recognition of these hexapeptides involves contacts with peptide residues Ala(Val) 88, Gly 89, and Pro 90, and is independent of the context of longer sequences.  相似文献   

17.
The essential role of enzymes in biological processes has continually ignited sparks of interest in their mechanism of action. Fully understanding the mechanism of enzymes has broad implications in protein engineering and drug design. The more than five order of magnitude speed-up in the rate of peptidyl–prolyl cistrans isomerisation by cyclophilin A (CypA) has been the target of intense research. CypA serves as a tractable model system, because it reversibly catalyses the rotation around peptidyl–prolyl bonds without any bond breakage or formation. Here, we discuss the results of recent computational approaches used to study the mechanism of CypA. We highlight the critical role of enzyme and substrate conformational dynamics in the developing interactions as the substrate approaches the transition state that results in an astonishing enhancement of isomerisation rate. The rate of isomerisation is affected by the intricate coupling between the dynamics of the substrate, enzyme and solvent. CypA binds its substrates via conformational selection, where rearrangements of key active site residues are necessary for substrate recognition. The conformational plasticity of the active site allows the enzyme to accommodate the most favourable interactions with the transition state that can be exploited for structure-based drug design.  相似文献   

18.
CD147是一种属于免疫球蛋白超家族的跨膜糖蛋白,可参与多种生理和病理过程,在组织重构、精子发生、神经形成及肿瘤转移等过程中发挥作用,其高表达于某些免疫细胞和肿瘤细胞表面,作为受体可与亲环蛋白(Cyp)结合。Cyp遍布于原核及真核生物中,在人类正常和肿瘤组织中,均可发现亲环蛋白。CypA和CypB这两种亲环蛋白家族中最丰富的成员,在细胞内和细胞外均可发挥重要作用。亲环蛋白与CD147的相互作用在炎症性疾病、心血管疾病及肿瘤的发生发展中具有重要意义,本文对CD147和亲环蛋白这两种蛋白质及其相互作用的研究进展和前景做一综述。  相似文献   

19.
Plasmacytoid dendritic cells (pDCs) play a central role for both innate and adaptive antiviral responses, as they direct immune responses through their unique ability to produce substantial concentrations of type I interferon (IFNs) upon viral encounter while also activating multiple immune cells, including macrophages, DCs, B, natural killer and T cells. Recent evidence clearly indicates that pDCs also play a crucial role in some cancers and several auto-immune diseases. Although treatments are currently available to patients with such pathologies, many are not fully efficient. We are proposing here, as a new targeted-based therapy, a novel chimeric monoclonal antibody (mAb) that mediates a strong cellular cytotoxicity directed against a specific human pDC marker, CD303. This antibody, ch122A2 mAb, is characterized by low fucose content in its human IgG1 constant (Fc) region, which induces strong in vitro and in vivo activity against human pDCs. We demonstrated that this effect relates in part to its specific Fc region glycosylation pattern, which increased affinity for CD16/FcγRIIIa. Importantly, ch122A2 mAb induces the down-modulation of CpG-induced IFN-α secretion by pDCs. Additionally, ch122A2 mAb shows in vitro high pDC depletion mediated by antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis. Remarkably, in vivo ch122A2 mAb efficacy is also demonstrated in humanized mice, resulting in significant pDC depletion in bloodstream and secondary lymphoid organs such as spleen. Together, our data indicates that ch122A2 mAb could represent a promising cytotoxic mAb candidate for pathologies in which decreasing type I IFNs or pDCs depleting may improve patient prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号