首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cultured rabbit aortic smooth muscle cells (SMC), 12-O-tetradecanoylphorbol-13-acetate (TPA) induced DNA synthesis in the presence of plasma-derived serum to a small extent, but inhibited markedly the rabbit whole blood serum (WBS)-, platelet-derived growth factor (PDGF)- and epidermal growth factor-induced DNA synthesis. Phorbol-12,13-dibutyrate (PDBu) mimicked this antiproliferative action of TPA, but 4 alpha-phorbol-12,13-didecanoate was inactive in this capacity. Prolonged treatment of the cells with PDBu caused the partial down-regulation of protein kinase C. In these protein kinase C-reduced cells, WBS still induced DNA synthesis, but TPA did not inhibit the WBS-induced DNA synthesis. We have previously shown that protein kinase C is involved at least partially in the PDGF-induced DNA synthesis in rabbit aortic SMC. The present results together with this earlier observation suggest that protein kinase C has not only a proliferative but also an antiproliferative action in rabbit aortic SMC.  相似文献   

2.
In rabbit aortic smooth muscle cells (SMC), protein kinase C-activating 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited the whole blood serum (WBS)-induced DNA synthesis. The inhibitory action of TPA was mimicked by another protein kinase C-activating phorbol ester, phorbol-12,13-dibutyrate (PDBu), but not by 4 alpha-phorbol-12,13- didecanoate known to be inactive for this enzyme. Prolonged treatment of the cells with PDBu caused the down-regulation of protein kinase C. In these cells, WBS still induced DNA synthesis but the inhibitory action of TPA was abolished. DNA synthesis started at 18 h and reached a maximal level 24 h after the addition of WBS. TPA inhibited the WBS-induced DNA synthesis even when added 12 h after the addition of WBS. These results suggest that protein kinase C has an antiproliferative action in rabbit aortic SMC and that this action is attributed to the inhibition of the progression from the late G1 into S phase of the cell cycle. TPA also inhibited the phospholipase C-mediated hydrolysis of phosphoinositides which was induced by WBS within several minutes, but the relevance of this effect on the antiproliferative action of TPA is uncertain.  相似文献   

3.
Incubation of cultured rabbit aortic smooth muscle cells (SMC) with phorbol-12, 13-dibutyrate (PDBu) for 48 h caused the down-regulation of protein kinase C (PKC) to the level of 30-40% of that in the control cells. The proliferative and antiproliferative actions of PKC were abolished in parallel with the loss of the down-regulation-sensitive component of PKC, but the inhibitory actions in the whole blood serum (WBS)-induced phospholipase C (PLC) reactions and intracellular Ca2+ mobilization were not affected. Immunoblot analysis with specific monoclonal antibodies against three PKC isozymes (type I, II and III) revealed that only the type III isozyme was detected in rabbit aortic SMC and that this isozyme completely disappeared after the incubation with PDBu. These results indicate that the type III isozyme is responsible for the proliferative and antiproliferative actions and suggest that the unidentified isozyme(s) is involved in the inhibitory actions in the WBS-induced PLC reactions and intracellular Ca2+ mobilization in rabbit aortic SMC.  相似文献   

4.
In quiescent cultures of rabbit aortic smooth muscle cells, whole blood serum-induced DNA synthesis was inhibited markedly by protein kinase C-activating 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and phorbol-12, 13-dibutyrate (PDBu), cyclic AMP-derivatives, such as dibutyryl cyclic AMP (Bt2cAMP) and 8-bromo-cyclic AMP, and interferon alpha/beta. Neither TPA nor interferon alpha/beta elevated the cellular cyclic AMP level. Neither Bt2cAMP nor interferon alpha/beta induced the phospholipase C-mediated hydrolysis of phosphoinositides. The down-regulation of protein kinase C by prolonged treatment with PDBu abolished the antiproliferative action of TPA but did not affect that of Bt2cAMP or interferon alpha/beta. TPA and Bt2cAMP inhibited the serum-induced DNA synthesis when added within 12 h after the addition of the serum, while interferon alpha/beta was active only when added within 6 h. These results suggest that there are at least three independent signaling systems, protein kinase C- and cyclic AMP-mediated systems and an unidentified system for interferon alpha/beta, which are involved in the antiproliferative mechanisms in rabbit aortic smooth muscle cells.  相似文献   

5.
The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on serotonin-induced inositol phosphate (IP) accumulation and intracellular free Ca2+ concentrations [( Ca2+]i) was investigated in cultured rat vascular smooth muscle cells. Pretreatment with TPA had no effect on basal levels of both IP production and [Ca2+]i, whereas it significantly attenuated serotonin-induced increases in both IP production and [Ca2+]i. These data suggest that protein kinase C is involved in the negative feedback control of serotonin-induced rises in both IP production and [Ca2+]i.  相似文献   

6.
The effects of protein kinase C stimulation on free cytosolic Ca2+ [( Ca2+]i) were studied in Fura 2-loaded UMR-106 cells. Stimulation of the protein kinase C with the tumor-promoting phorbol esters 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13-diacetate or 1-oleoyl-2-acetylglycerol was followed by an increase in [Ca2+]i. The protein kinase C-induced increase in [Ca2+]i has a lag period, the duration of which was dependent on the stimulant and medium Ca2+ concentrations. With 2 microM TPA, the rise in [Ca2+]i peaked within 1.5 min, after which [Ca2+]i returned partially toward base line. The increase in [Ca2+]i was absolutely dependent on the presence of medium Ca2+ and was inhibited by the Ca2+ channel blockers nicardipine and verapamil. Cell stimulation also results in Ca2+ release from intracellular pool(s) which appears to be mediated by a Ca2+-dependent Ca2+ release mechanism. The reduction in [Ca2+]i was due to channel inactivation. Pretreatment of the cells with 1 nM TPA, 2 units/ml parathyroid hormone (PTH), or 15 microM forskolin blocked the effect of 2 microM TPA on [Ca2+]i. TPA and PTH were more potent inhibitors than was forskolin. The properties of this channel are compared to the cAMP-independent PTH-stimulated Ca2+ channel present in these cells.  相似文献   

7.
Smooth muscle cells were cultured from an arteriole-rich fraction of the rabbit renal cortex and characterized by their ultrastructural and immunohistochemical features, their high content in creatine kinase (60-times that of the initial preparation) and their ability to synthesize renin. Cells, studied between passages 2 and 5, produced mainly PGE2 and, to a lesser extent, PGF2 alpha. Bradykinin (BK) (0.1 nM-1 microM) induced a concentration-dependent increase in PGE2 (28-40-times basal value at 1 microM after a 5 min incubation period) and stimulated also the free cytosolic calcium concentration [( Ca2+]i) with a 2-fold maximal rise to its basal value. Both effects, inhibited by the anti-B2 receptor [Thi5.8D-Phe7] BK, were not reproduced by DesArg9 BK. A decrease in the extracellular calcium concentration and incubation in the presence of a calcium-channel blocker (lanthanum chloride) inhibited the BK-dependent rise of [Ca2+]i but not that of PGE2. Preincubation with phorbol myristate acetate increased basal and BK-induced PGE2 synthesis but prevented the effect of BK on [Ca2+]i. These results demonstrate the ability of BK to increase [Ca2+]i and PGE2 production in cultured vascular cells from the rabbit renal cortex and suggest that kinins might act on the cortical microcirculation via their direct effects on arteriolar smooth muscle cells.  相似文献   

8.
9.
We have used phorbol esters, such as 12-O-tetradecanoyl phorbol 13-acetate (TPA), to study the actions of protein kinase C (a TPA receptor) on cytosolic free Ca2+ concentrations [( Ca2+]i) and hormone secretion in rat pituitary cells (GH cells), and to elucidate the role of diacylglycerol (a protein kinase C activator) in thyrotropin-releasing hormone (TRH) action. TPA had a dual action on [Ca2+]i, inducing a stimulatory phase from 300 (basal) to 420 nM, which was interrupted in 30-60 s by an inhibitory phase which transiently lowered [Ca2+]i to 240 nM and rose in 3-10 min to yield the stimulatory phase. TPA-mediated changes in [Ca2+]i were induced by other phorbol esters and mezerein but not by phorbol or activators of kinases different from protein kinase C. Both phases of TPA action on [Ca2+]i were abolished by 5-min pretreatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (1.33 mM) or Ca2+ channel antagonists (verapamil or nifedipine). TPA also enhanced the rate of sustained hormone secretion without inducing a burst of hormone release (unlike TRH). Also, stimulation of secretion by TPA was not inhibited by Ca2+ channel antagonists and was resistant (10%) to EGTA. Simultaneous addition of TPA with the ionophore ionomycin (100 nM) reconstituted a TRH-like spike, nadir and plateau of [Ca2+]i. Ionomycin generated the spike in [Ca2+]i by releasing TRH-sensitive Ca2+ stores, while TPA induced the nadir (inhibitory phase), and a nifedipine/verapamil-sensitive plateau of [Ca2+]i (stimulatory phase). Concurrent (but not separate) addition of ionomycin and TPA also reconstituted a TRH-like burst of hormone secretion. These and previous results indicate that activation of protein kinase C by TPA or diacylglycerol (which is elevated by TRH) and a simultaneous spike in [Ca2+]i are required for burst secretion. Diacylglycerol may also mediate the TRH-induced nadir and plateau of [Ca2+]i; the latter process contributes to Ca2+-dependent stimulation of steady secretion by TRH.  相似文献   

10.
In studying the regulation of insulin secretion by phorbol esters, we examined their effects on the cytosolic free Ca2+ concentration ([Ca2+]i), using the Ca2+ indicator fura-2 in the rat insulin-secreting beta-cell line RINm5F. [Ca2+]i was measured in parallel with the rate of insulin release. 50 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), which may act via protein kinase C, stimulated insulin release and caused an increase in [Ca2+]i. Ca2+-free conditions eliminated the increase in [Ca2+]i and resulted in a reduced stimulation of insulin release by TPA. The Ca2+ channel blocker nitrendipine (300 nM) inhibited both the increase in [Ca2+]i and the increased rate of insulin secretion. Another phorbol ester, 4 beta-phorbol 12,13-didecanoate, which activates protein kinase C, also induced an increase in [Ca2+]i and in the rate of insulin release, while 4 alpha-phorbol 12,13-didecanoate, which fails to stimulate protein kinase C, was without effect. Further studies with bis-oxonol as an indicator of membrane potential showed that TPA depolarized the beta-cell plasma membrane. From these results, it is concluded that TPA depolarizes the plasma membrane, induces the opening of Ca2+ channels in the RINm5F beta-cell plasma membrane, increases [Ca2+]i, and results in insulin secretion. The action of TPA was next compared with that of a depolarizing concentration of KC1 (25 mM), which stimulates insulin secretion simply by opening Ca2+ channels. TPA consistently elicited less depolarization, a smaller rise of [Ca2+]i, but a greater release of insulin than KC1. Therefore an additional action of TPA is suggested, which potentiates the action of the elevated [Ca2+]i on insulin secretion.  相似文献   

11.
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle.  相似文献   

12.
We made use of quin2 microfluorometry to determine the effects of endothelin (ET) on cytosolic free Ca2+ concentrations [Ca2+]i) in rat aortic smooth muscle cells in primary culture. In Ca2+-containing medium, ET induced a rapid and sustained elevation of [Ca2+]i. In the latter component, in particular, the elevation of [Ca2+]i was inhibited by diltiazem. In Ca2+-free medium, ET induced a rapid and transient [Ca2+]i elevation, which was not inhibited by diltiazem. When the caffeine-sensitive intracellular Ca2+ store was practically depleted by repeated treatment with caffeine in Ca2+-free media, ET did not elevate [Ca2+]i. Thus, it was suggested that ET induces [Ca2+]i elevation not only by extracellular Ca2+-dependent, mechanisms but also by releasing Ca2+ from the intracellular store, and that the ET-sensitive Ca2+ store may overlap with the caffeine-sensitive one, in cultured vascular smooth muscle cells.  相似文献   

13.
The change in cytoplasmic free calcium, [Ca2+]i in isolated bovine adrenal medullary cells during stimulation by acetylcholine (ACh) in Ca2+-free incubation medium was measured using the fluorescent Ca2+ indicator quin2. ACh (1-100 microM) caused an increase in [Ca2+]i by mobilization of Ca2+ from the intracellular pool. Nicotine (10 microM) did not increase [Ca2+]i in the absence of extracellular Ca2+. Pretreatment of the cells with atropine (10 microM) completely inhibited ACh-induced increase in [Ca2+]i, whereas pretreatment with hexamethonium (100 microM) did not. The intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), inhibited ACh-induced increase in [Ca2+]i. The activator of protein kinase C 12-O-tetradecanoylphorbol-13-acetate (TPA), but not its 'inactive' analog 4 alpha-phorbol-12,13-didecanoate (PDD), also inhibited ACh-induced increase in [Ca2+]i. These findings suggest that in bovine adrenal medullary cells, stimulation of muscarinic ACh receptor causes an increase in [Ca2+]i by mobilizing Ca2+ from the intracellular pool and that protein kinase C is involved in 'termination' or 'down regulation' of this response.  相似文献   

14.
The relationship between changes in the intracellular free Ca2+ concentration, [Ca2+]i, and the initiation of proliferation of murine B cells after the addition of mitogens and activators was studied. The effects of lipopolysaccharide (LPS), 12-O-tetradecanoyl phorbol-13-acetate (TPA), rabbit IgG antimouse Fab (IgG RAM Fab), and its F(ab')2 fragment (F(ab')2 anti-Fab) on the [Ca2+]i were measured using the fluorescent calcium indicator Fura-2. In parallel experiments, DNA and/or RNA synthesis were measured by assaying [3H]thymidine and/or [3H]uridine uptake. LPS stimulated a 20-120 X increase in the [3H]thymidine uptake, and a 3-7 X increase in [3H]uridine uptake without inducing any change in the [Ca2+]i. TPA induced a marginal increase in [3H]thymidine and [3H]uridine uptake, without effecting any change in the [Ca2+]i. In contrast, low doses of IgG RAM Fab produced a triphasic change in the [Ca2+]i, but had no effect on the [3H]thymidine or [3H]uridine uptake, even at much higher concentrations. Similarly, low doses of the F(ab')2 fragment induced sizable increases in the [Ca2+]i without affecting the [3H]nucleoside uptake. However, higher concentrations of F(ab')2 anti Fab increased the [3H]thymidine uptake and [3H]uridine uptake, while also increasing the [Ca2+]i. Significantly, pretreating the cells with TPA for 3 min virtually abolished the [Ca2+]i increase induced by IgG RAM Fab while simultaneously potentiating an increase in the IgG RAM Fab-induced [3H]thymidine uptake 85-fold. In the presence of TPA, IgG RAM Fab also induced a 2- to 30-fold increase in [3H]uridine uptake. Similarly, TPA virtually abolished the [Ca2+]i increase induced by the F(ab')2 anti-Fab fragment, yet it stimulated a F(ab')2 anti-Fab-induced uptake of [3H]thymidine and [3H]uridine by 120 and 10 times, respectively.  相似文献   

15.
The soy-derived isoflavones genistein and daidzein affect the contractile state of different kinds of smooth muscle. We describe acute effects of genistein and daidzein on contractile force and intracellular Ca2+ concentration ([Ca2+]i) in in situ smooth muscle of rat aorta. Serotonin (5-HT) (2 microM) or a depolarizing high K+ solution produced the contraction of aortic rings, which were immediately relaxed by 20 microM genistein and by 20 microM daidzein. Accordingly, both 5-HT and a high K+ solution increased the [Ca2+]i in in situ smooth muscle cells. Genistein strongly inhibited the [Ca2+]i increase evoked by 5-HT (74.0 +/- 7.3%, n = 11, p < 0.05), and had a smaller effect on high K+ induced [Ca2+]i increase (19.9 +/- 4.0%, n = 7, p < 0.05). The K+ channels blocker tetraethylammonium (TEA) (0.5 mM) diminished genistein effects on 5-HT-induced [Ca2+]i increase. Interestingly, during prolonged application of 5-HT, the [Ca2+]i oscillated and a short (90 s) preincubation with genistein (20 microM) significantly diminished the frequency of the oscillations. This effect was totally abolished by TEA. In conclusion, in rat aortic smooth muscle, genistein is capable of diminishing the increase in [Ca2+]i and in force evoked by 5-HT and high K+ solution, and of decreasing the frequency of [Ca2+]i oscillations induced by 5-HT. The short time required by genistein, and the relaxing effect of daidzein suggest that tyrosine kinases inhibition is not involved. The small inhibiting effect of genistein on the [Ca2+]i increase evoked by high K+ and the effect of TEA point to the activation by genistein of calcium-activated K+ channels.  相似文献   

16.
Treatment of bovine chromaffin cells with 40 mM KCl stimulates a 3-fold increase in total methionine enkephalin immunoreactivity (medium plus cells) and a 4-fold increase in proenkephalin mRNA (mRNAenk). These effects of KCl, which are dependent on extracellular calcium, can be blocked by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), although release of methionine enkephalin appears less affected. Using fura-2-loaded chromaffin cells and a dual-excitation wavelength spectrofluorometer, we have examined whether the actions of KCl and TPA on methionine enkephalin synthesis and release can be explained by changes in intracellular free calcium ([Ca2+]i). KCl produced a rapid 600 nM increase in [Ca2+]i from resting levels of approximately 170 nM. Subsequently, [Ca2+]i declined to a new steady-state plateau which was approximately 275 nM higher than the original resting levels. The postdepolarization plateau of [Ca2+]i was reduced by TPA, (-)-(R)-202,791 (a dihydropyridine calcium channel antagonist), and LaCl3 (a nonselective calcium channel blocker). TPA also inhibited potentiation of the KCl-stimulated plateau of [Ca2+]i due to (+)-(S)-202,791, a calcium channel agonist. In contrast, TPA had no effect on resting [Ca2+]i and only slightly inhibited the initial rapid KCl-stimulated increase in [Ca2+]i. The inhibitory effects were maintained for 24 h in the continuous presence of TPA. We conclude 1) that TPA inhibits enkephalin synthesis by inactivating dihydropyridine-sensitive voltage-dependent calcium channels, 2) that these channels alone maintain elevated [Ca2+]i following KCl depolarization, and 3) that sustained elevation in [Ca2+]i is necessary in order to increase enkephalin synthesis in KCl-treated chromaffin cells.  相似文献   

17.
Cultured endothelial cells release a potent vasoconstrictor peptide, endothelin. Cumulative addition of synthetic endothelin to isolated rabbit aortic rings elicited a concentration-dependent increase in contractile tension which was endothelium-independent. In cultured rabbit vascular smooth muscle cells loaded with the fluorescent dye fura 2, endothelin induced a concentration-dependent increase in [Ca2+]i over the range of 0.01 to 100 nM. Moreover, in the absence of extracellular Ca2+, endothelin could still induce an increase in [Ca2+]i. In addition, endothelin stimulated 45Ca2+ efflux from preloaded vascular smooth muscle cells in the presence and absence of extracellular Ca2+, as well as stimulating 45Ca2+ influx in a concentration-dependent manner. Measurement of inositol phosphates in [3H]-myoinositol-labelled vascular vascular trisphosphate. Unlabelled endothelin inhibited (125I)-endothelin binding to cultured rabbit vascular smooth muscle cells in a concentration-dependent manner. Binding was not inhibited by other vasoactive hormones or calcium channel ligands, suggesting cell surface receptors specific for endothelin. We conclude that one of the initial membrane events in the action of endothelin is to induce phospholipase C-stimulated PIP2 hydrolysis and that this signalling mechanism is initiated by endothelin/receptor interaction at the plasma membrane.  相似文献   

18.
The dependency of normal cell proliferation on adequate extracellular Ca2+ levels was further investigated by determining the role of Ca2+ influx in epidermal growth factor (EGF)-induced rat liver epithelial (T51B) cell DNA synthesis. Fura-2-loaded T51B cells responded with an increase in [Ca2+]i to EGF (5-50 ng/ml) that was blocked by low (25 microM) extracellular Ca2+ or by pretreatment with 50 microM La3+ to inhibit plasma membrane Ca2+ flux. Confluent T51B cells treated for 24 h with EGF (0.1-50 ng/ml) dose-dependently incorporated [3H]-thymidine into cell nuclei. Low extracellular Ca2+ or addition of La3+ prevented the EGF-stimulated rise in labeled nuclei, indicating that a movement of Ca2+ into the cell was required for DNA synthesis. This was supported by our findings that bradykinin, which induced a rise in [Ca2+]i by opening plasma membrane Ca2+ channels in T51B cells (but not A23187, thrombin or ATP, which raise [Ca2+]i primary through mobilization of intracellular Ca2+ stores), potentiated DNA synthesis stimulated by submaximal doses of EGF. Potentiation of the action of EGF by the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA), indicates that activation of protein kinase C and an influx of Ca2+ share a common mechanism for initiating DNA synthesis.  相似文献   

19.
Although serotonin (5-HT) induced proliferation of vascular smooth muscle cells is considered to involve changes in intracellular Ca2+ ([Ca2+]i), the mechanism of Ca2+ mobilization by 5-HT is not well defined. In this study, we examined the effect of 5-HT on rat aortic smooth muscle cells (RASMCs) by Fura-2 microfluorometry for [Ca2+]i measurements. 5-HT was observed to increase the [Ca2+]i in a concentration- and time-dependent manner. This action of 5-HT was dependent upon the extracellular concentration of Ca2+ ([Ca2+]e) and was inhibited by both Ca2+ channel antagonists (verapamil and diltiazem) and inhibitors of sarcoplasmic reticular Ca2+ pumps (thapsigargin and cyclopia zonic acid). The 5-HT-induced increase in [Ca2+]i was blocked by sarpogrelate, a 5-HT2A-receptor antagonist, but not by different agents known to block other receptor sites. 5-HT-receptor antagonists such as ketanserin, cinanserin, and mianserin, unlike methysergide, were also found to inhibit the 5-HT-induced Ca2+ mobilization, but these agents were less effective in comparison to sarpogrelate. On the other hand, the increase in [Ca2+]i in RASMCs by ATP, angiotensin II, endothelin-1, or phorbol ester was not affected by sarpogrelate. These results indicate that Ca2+ mobilization in RASMCs by 5-HT is mediated through the activation of 5-HT2A receptors and support the view that the 5-HT-induced increase in [Ca2+]i involves both the extracellular and intracellular sources of Ca2+.  相似文献   

20.
The interaction between beta-adrenergic signaling and the activation of protein kinase C in alveolar type II cell plays an important role in the regulation of surfactant secretion because the combined application of beta-adrenergic agonist with protein kinase C activator to the cells stimulates the secretion synergistically. However, the mechanisms underlying the interaction are not clear. In the present study, we examined the combined effect of terbutaline with phorbol 12-myristate 13-acetate (PMA) on cytoplasmic free Ca2+ concentration ([Ca2+]i) in rat alveolar type II cells. The combined application of terbutaline with PMA to the cells rapidly increased [Ca2+]i, although neither of them affected it by itself. Similar increases of [Ca2+]i were observed in other combinations, such as terbutaline with 1-oleoyl-2-acetyl-sn-glycerol, and forskolin with PMA. Either the removal of extracellular Ca2+ or the addition of Co2+ remarkably suppressed the increase of [Ca2+]i induced by the combination of terbutaline with PMA. In addition, Co2+ inhibited the phosphatidylcholine secretion induced by the combination of terbutaline and PMA. These results suggested that the [Ca2+]i increased as a result of the interaction between formation of cyclic AMP and activation of protein kinase C in alveolar type II cells, and that the increase in [Ca2+]i was mediated by the Ca2+ influx through the plasma membrane. This mechanism to modulate [Ca2+]i may play a role in the regulation of surfactant secretion by alveolar type II cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号