首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphofructokinaseis a key regulatory enzyme of the glycolytic pathway. We have determined the structure of this enzyme from Saccharomyces cerevisiae to a resolution of 2.0 nm. This is the first structure available for this family of enzymes in eukaryotic organisms. Phosphofructokinase is an octamer composed of 4α and 4β subunits arranged in a dihedral point group symmetry D2. The enzyme has a very open and elongated structure, with dimensions of 24 nm in length and 17 nm in width. The final structure, calculated from 0° tilt projections of the molecule at random orientations using as reference the volume obtained by the random conical reconstruction technique in ice, has allowed us to discern the shapes of the subunits and their mutual arrangement in the octamer.  相似文献   

2.
Gentisate 1,2-dioxygenase, which participates in salicylate and m-hydroxybenzoate metabolism, was purified from cell-free extracts of Rhodococcus erythropolis S-1, a Gram-positive bacterium. The purified enzyme gave a single band on native PAGE and SDS–PAGE. The molecular mass of the enzyme was estimated to be 328 kDa. The structure of the enzyme appears to be an octamer of identical subunits. The enzyme from this bacterium was similar in general enzymatic properties to a gentisate 1,2-dioxygenase from a Gram-negative bacterium except for molecular mass and structure.  相似文献   

3.
The properties of creatine kinase isolated from bovine heart mitochondria in dimeric (Mr = 84 +/- 6 kD) and octameric (Mr = 340 +/- 17 kD) forms were compared with those of the earlier described hexameric form of the enzyme (Mr = 240 +/- 12 kD). The kinetics of SH-group modification by DTNB, the inactivation kinetics as well as the number of modified SH-groups point to significant differences between the three oligomeric forms of the enzyme. Each subunit of creatine kinase was found to possess one "fast" essential cysteine residue whose modification by DTNB and iodoacetamide led to enzyme inactivation. The formation of an analog of the transition state complex (E--MgADP--NO3--creatine) was paralleled with partial protection of only the "fast" cysteine residue which manifested itself in the decrease of the rate of its interaction with DTNB in all the three oligomeric forms. Dimer association into a hexamer and octamer occurred in parallel with a decrease of the affinity of essential SH-groups of cysteine for DTNB in 50% of the oligomeric molecule subunits. Thus, in the dimer two essential SH-groups were rapidly modified by DTNB at the same rate: k1 = k2 = (23.9 +/- 5.6).10(4) M-1 min-1. Within the hexamer, the rate of modification of 3 out of 6 SH-groups was practically unchanged: k1 = (10.6 +/- 2.3).10(4) M-1 min-1. Another 3 SH-groups in the remaining 50% of the subunits were partly masked, which manifested itself in a 10-fold decrease of their modification rate: k2 = (1.12 +/- 0.28).10(4) M-1 min-1. Within the octamer, the SH-groups rapidly interacted with DTNB only on 4 subunits: k1 = (20.7 +/- 2.2).10(4) M-1 min-1, whereas in the remaining 4 octamer subunits a practically complete masking of essential SH-groups was observed, as a result of which these groups became inaccessible to DTNB. This manifested itself in a 1000-fold decrease of the rate of SH-group modification by DTNB which reached that of non-essential SH-group modification. In has been found that a complete loss of the octamer activity is due to the modification of only 4 SH-groups which interact with DTNB at a high rate. A model for subunit association into a dimer, hexamer and octamer has been proposed. Presumably, 50% of the active centers in the mitochondrial creatine kinase octamer are not involved in the catalytic act.  相似文献   

4.
Factors affecting the oligomeric structure of yeast external invertase   总被引:4,自引:0,他引:4  
It has been assumed that yeast external invertase is a dimer, with each subunit composed of a 60-kDa polypeptide chain. We now present evidence that at its optimal pH of 5.0, the predominant form of external invertase is an octamer with an average size of 8 X 10(5) Da. During ultracentrifugation the octamer dissociated to lower molecular weight forms, including a hexamer, tetramer, and dimer. All forms of the enzyme were shown to possess identical specific activities and to contain a similar carbohydrate to protein ratio. Although the monomer subunits (1 X 10(5) Da) were heterogenous in carbohydrate content, each subunit possessed nine oligosaccharide chains. When stained for protein and enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, only the oligomeric form of the enzyme appeared to be active. Thus, on partially inactivating invertase with 4 M guanidine hydrochloride both octamer and monomer were evident on the gels but only the former was active. Similarly, incubating at pH 2.5 in the presence of sodium dodecyl sulfate yielded only inactive monomer. The monomer, unlike the active oligomeric aggregate, was unable to hydrolyze sucrose after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Consistent with the in vitro studies, freshly prepared yeast lysate was shown to contain the octameric species of external invertase as the major active form of this enzyme. From these studies and others which employed deglycosylated invertase, it is concluded that the carbohydrate component of external invertase contributes not only to stabilizing enzyme activity, but also to maintaining its oligomeric structure.  相似文献   

5.
Crosslinking of subunits of the high molecular weight oligomer of bovine heart mitochondrial creatine kinase (CKm) by dimethyl suberimidate and subsequent electrophoresis in the presence of sodium dodecyl sulfate gives eight protein bands. An increase in the time course of the enzyme crosslinking reaction results in the protein accumulation in the high molecular weight bands. Evidence has been obtained suggesting that crosslinking involves only the intraoligomeric contact areas. It is concluded that bovine heart CKm is an octamer. Crosslinking of intersubunit contacts in the octameric form of the enzyme by various diimidates has been carried out. The data obtained suggest that within the octamer the CKm subunits have a quasispherical rather than planar arrangement. This finding is supported by electron microscopy data.  相似文献   

6.
The histone octamer, a conformationally flexible structure   总被引:1,自引:0,他引:1  
K Park  G D Fasman 《Biochemistry》1987,26(25):8042-8045
The conformation of the histone octamer complex in solution has been shown, by circular dichroism studies, to be highly dependent on the nature of the salt milieu and its concentration. In 2 M NaCl, the complex has 43.5% alpha-helix, 16% beta-sheet, and 40.5% random structure. In 2.3 M (NH4)2SO4, the octamer has 49.0% alpha-helix and 51% random structure. These results partially explain the discrepant results obtained by the X-ray analysis of crystals obtained under varying conditions.  相似文献   

7.
Family 1 of glycosyl hydrolases is a large and biologically important group of enzymes. A new three-dimensional structure of this family, beta-glucosidase from Bacillus circulans sp. alkalophilus is reported here. This is the first structure of beta-glucosidase from an alkaliphilic organism. The model was determined by the molecular replacement method and refined to a resolution of 2.7 A. The quaternary structure of B. circulans sp. alkalophilus beta-glucosidase is an octamer and subunits of the octamer show a similar (beta/alpha)(8) barrel fold to that previously reported for other family 1 enzymes. The crystal structure suggested that Cys169 in the active site is substituted. The Cys169 is located near the putative acid/base catalyst Glu166 and it may contribute to the high pH optimum of the enzyme. The crystal structure also revealed that the asymmetric unit contains two octamers which have a clear binding interaction with each other. The ability of the octamers to link with each other suggested that beta-glucosidase from Bacillus circulans sp. alkalophilus is able to form long polymeric assemblies, at least in the crystalline state.  相似文献   

8.
Mammalian formiminotransferase cyclodeaminase (FTCD), a 0.5 million Dalton homo-octameric enzyme, plays important roles in coupling histidine catabolism with folate metabolism and integrating the Golgi complex with the vimentin intermediate filament cytoskeleton. It is also linked to two human diseases, autoimmune hepatitis and glutamate formiminotransferase deficiency. Determination of the FTCD structure by X-ray crystallography and electron cryomicroscopy revealed that the eight subunits, each composed of distinct FT and CD domains, are arranged like a square doughnut. A key finding indicates that coupling of three subunits governs the octamer-dependent sequential enzyme activities, including channeling of intermediate and conformational change. The structure further shed light on the molecular nature of two strong antigenic determinants of FTCD recognized by autoantibodies from patients with autoimmune hepatitis and on the binding of thin vimentin filaments to the FTCD octamer.  相似文献   

9.
The three-dimensional structure of the nickel-containing hydrogenase from Thiocapsa roseopersicina has been determined at a resolution of 2 nm in the plane and 4 nm in the vertical direction by electron microscopy and computerized image processing on microcrystals of the enzyme. The enzyme forms a large ring-shaped complex containing six each of the large (62-kDa) and small (26-kDa) subunits. The complex is very open, with six well-separated dumbbell-shaped masses surrounding a large cylindrical hole. Each dumbbell is interpreted as consisting of one large and one small subunit.  相似文献   

10.
Methylenetetrahydrofolate reductase in Clostridium formicoaceticum has been purified to a specific activity of 140 mumol min-1 mg-1 when assayed at 37 degrees C, pH 7.2, in the direction of oxidation of 5-methyltetrahydrofolate with benzyl viologen as electron acceptor. The purified enzyme is judged to be homogeneous by polyacrylamide disc-gel electrophoresis and gel filtration. The enzyme which is an octamer has a molecular weight of about 237,000 and consists of four each of two different subunits having the molecular weights 26,000 and 35,000. The octameric enzyme contains per mol 15.2 +/- 0.3 iron, 2.3 +/- 0.2 zinc, 19.5 +/- 1.3 acid-labile sulfur, and 1.7 FAD. The UV-visible absorbance spectrum has a peak at 385 nm and a shoulder at 430 nm and is that of a flavoprotein containing iron-sulfur centers. The reductase, which is sensitive to oxygen, must be handled anaerobically and is stabilized by 2 mM dithionite. It catalyzes the reduction of methylene blue, menadione, benzyl viologen, rubredoxin, and FAD with 5-methyltetrahydrofolate and the oxidation of reduced ferredoxin and FADH2 with 5,10-methylenetetrahydrofolate. No activity was observed with pyridine nucleotides. It is suggested that the physiologically important reaction catalyzed by the enzyme is the reduced ferredoxin-dependent reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate.  相似文献   

11.
《FEBS letters》1986,209(1):63-70
RuBPCase has been purified to electrophoretic homogeneity from moss and spinach. On denaturing SDS-polyacrylamide gels the purified enzyme revealed two discrete bands, thereby indicating the presence of large and small subunits. The phosphoprotein nature of RuBPCase was proved by in vivo labelling of enzyme with [32P]orthophosphate. Autoradiographic analysis of 32P-labelled RuBPCase on SDS-PAG demonstrated that phosphorylation was restricted to the small subunit. Dephosphorylation of purified RuBPCase with alkaline phosphatase resulted in a dramatic decline (70% decrease) in the biological activity of the enzyme. Fractionation of the dephosphorylated enzyme on denaturing gels revealed only the presence of large subunits of RuBPCase. Thus it became evident that dephosphorylation of RuBPCase brings about the dissociation of small subunits from the catalytic large subunits (octamer). The dephosphorylated small subunits were isolated as dimers. These results clearly indicate that phosphorylation of small subunits is mandatory for the reconstitution of holoenzyme and hence crucial for the activation of RuBPCase.  相似文献   

12.
Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate resulting in the decomposition of cyanate to ammonia and bicarbonate. In this study, the role of the single sulfhydryl group in each of the eight identical subunits of cyanase was investigated. Tetranitromethane, methyl methanethiosulfonate, N-ethylmaleimide, and Hg2+ all reacted with the sulfhydryl group to give derivatives which had reduced activities and which dissociated reversibly to inactive dimer. Association of inactive dimer to active octamer was facilitated by the presence of azide (cyanate analog) and bicarbonate, increased temperature and enzyme concentration, and presence of phosphate. Nitration of tyrosine residues by tetranitromethane occurred only in the absence of azide and bicarbonate, suggesting that at least some of the tyrosine residues become exposed when octamer dissociates to dimer. Site-directed mutagenesis was used to prepare a mutant enzyme in which serine was substituted for cysteine. The mutant enzyme was catalytically active and had properties very similar to native enzyme, except that it was less stable to treatment with urea and to high temperatures. These results establish that in native cyanase the sulfhydryl group per se is not required for catalytic activity, but it may play a role in stabilizing octameric structure, and that octameric structure is required for catalytic activity.  相似文献   

13.
When ribulose bisphosphate carboxylase-oxygenase from Synechococcus (strain RRIMP N1) was precipitated under mildly acidic conditions, most of its small subunits remained in solution. The precipitated enzyme readily redissolved at neutral pH and remained as an octamer of large subunits with some small subunits still attached. Optimum pH for this separation was 5.3 and disulfide-reducing reagents were not necessary. The fraction of small subunits removed by a single precipitation increased with increasing NaCl concentration. Catalytic activity of small subunit-depleted enzyme was linearly proportional to the fraction of small subunits remaining, while the carboxylase:oxygenase activity ratio and the affinity for CO2 remained constant. When isolated small subunits were added back to depleted enzyme preparations at neutral pH, reassociation occurred with return of catalytic activity. Under the usual assay conditions at pH 7.7, the binding constant of the small subunits was estimated to be about 10(-9) M. The small subunits also bound avidly to surfaces. However, loss of small subunits from the enzyme during the course of purification was minimal. The results are consistent with a simple model in which only those large subunits which have a small subunit bound to them are catalytically competent. Thus, an essential, even if indirect, role for the small subunits in catalysis is indicated.  相似文献   

14.
1. Glutamine synthetase has been purified to homogeneity from chicken liver mitochondria. 2. The native enzyme is an octamer composed of identical subunits with monomeric mol. wt of 42,000 dalton. 3. Apparent Kms for NH4+, ATP and glutamate were 0.5, 0.9 and 6 mM, respectively. D-Glutamate and L-alpha-hydroxyglutarate were utilized as substrates with activities approx. 40% those obtained with glutamate. Of several nucleotides tested, none were effective replacements for ATP. 4. Heavy metal ions were inhibitory as were Mn2+, Ca2+ and lanthanide ions. 5. Despite its different subcellular localization and physiological function, avian glutamine synthetase is markedly similar to the weakly-bound microsomal rat liver enzyme with respect to a number of physical and chemical properties.  相似文献   

15.
Most enolases are homodimers. There are a few that are octamers, with the eight subunits arranged as a tetramer of dimers. These dimers have the same basic fold and same subunit interactions as are found in the dimeric enolases. The dissociation of the octameric enolase from S. pyogenes was examined, using NaClO4, a weak chaotrope, to perturb the quaternary structure. Dissociation was monitored by sedimentation velocity. NaClO4 dissociated the octamer into inactive monomers. There was no indication that dissociation of the octamer into monomers proceeded via formation of significant amounts of dimer or any other intermediate species. Two mutations at the dimer-dimer interface, F137L and E363G, were introduced in order to destabilize the octameric structure. The double mutant was more easily dissociated than was the wild type. Dissociation could also be produced by other salts, including tetramethylammonium chloride (TMACl) or by increasing pH. In all cases, no significant amounts of dimers or other intermediates were formed. Weakening one interface in this protein weakened the other interface as well. Although enolases from most organisms are dimers, the dimeric form of the S. pyogenes enzyme appears to be unstable.  相似文献   

16.
We have utilized the H2a-specific protease as a unique probe to investigate the nature of the interactions between the protein subunits which form the core histone octamer. Upon incubation in high ionic strength media this protease, normally found tightly associated with isolated calf thymus chromatin, releases the 15 COOH-terminal amino acids of histone H2a by specifically cleaving the H2a polypeptide between Val114 and Leu115, yielding cleaved H2a (cH2a) and a free pentadecapeptide (Eickbush, T. H., Watson, D. K., and Moudrianakis, E. N. (1976) Cell 9, 785-792). We find that removal of this pentadecapeptide results in a marked dissociation of the octamer into its H2a:H2b dimer and H3:H4 tetramer subunits. Reconstitution experiments indicate that cH2a is capable of forming a dimer with H2b, but this cH2a:H2b dimer has a substantially lower affinity for the H3:H4 tetramer than native H2a:H2b dimer. Kinetic studies of H2a cleavage in high ionic strength solutions demonstrate that H2a molecules in the octamer are relatively resistant to proteolytic attack compared to H2a molecules in the dimer. The extent of this resistance, in response to various experimental parameters, is directly correlated to the strength of interaction between the H2a:H2b dimer and H3:H4 tetramer subunits. These reconstitution and kinetic experiments suggest that the histone domains proximal to the H2a cleavage site have an important function in maintaining the association of the histone octamer subunits.  相似文献   

17.
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an octameric enzyme composed of four heterodimers of regulatory IDH1 and catalytic IDH2 subunits. The crystal structure suggested that the interactions between tetramers in the octamer are restricted to defined regions in IDH1 subunits from each tetramer. Using truncation and mutagenesis, we constructed three tetrameric forms of IDH. Truncation of five residues from the amino terminus of IDH1 did not alter the octameric form of the enzyme, but this truncation with an IDH1 G15D or IDH1 D168K residue substitution produced tetrameric enzymes as assessed by sedimentation velocity ultracentrifugation. The IDH1 G15D substitution in the absence of any truncation of IDH1 was subsequently found to be sufficient for production of a tetrameric enzyme. The tetrameric forms of IDH exhibited ~50% reductions in V(max) and in cooperativity with respect to isocitrate relative to those of the wild-type enzyme, but they retained the property of allosteric activation by AMP. The truncated (-5)IDH1/IDH2 and tetrameric enzymes were much more sensitive than the wild-type enzyme to inhibition by the oxidant diamide and concomitant formation of a disulfide bond between IDH2 Cys-150 residues. Binding of ligands reduced the sensitivity of the wild-type enzyme to diamide but had no effect on inhibition of the truncated or tetrameric enzymes. These results suggest that the octameric structure of IDH has in part evolved for regulation of disulfide bond formation and activity by ensuring the proximity of the amino terminus of an IDH1 subunit of one tetramer to the IDH2 Cys-150 residues in the other tetramer.  相似文献   

18.
Spectropolarimetric analysis of the core histone octamer and its subunits   总被引:3,自引:0,他引:3  
The secondary structure of the calf thymus core histone octamer, (H2A-H2B-H3-H4)2, and its two physiological subunits, the H2A-H2B dimer and (H3-H4)2 tetramer, was analyzed by ORD spectropolarimetry as a function of temperature and solvent ionic strength within the ranges of these experimental parameters where assembly of the core histone octamer exhibits pronounced sensitivity. While the secondary structure of the dimer is relatively stable from 0.1 to 2.0 M NaCl, the secondary structure of the tetramer exhibits complex changes over this range of NaCl concentrations. Both complexes exhibit only modest responses to temperature changes. ORD spectra of very high and very low concentrations of stoichiometric mixtures of the core histones revealed no evidence of changes in the ordered structure of the histones as a result of the octamer assembly process at NaCl concentrations above 0.67 M, nor were time-dependent changes detected in the secondary structure of tetramer dissolved in low ionic strength solvent. The secondary structure of the chicken erythrocyte octamer dissolved in high concentrations of ammonium sulfate, including those of our crystallization conditions, was found to be essentially unchanged from that in 2 M NaCl when examined by both ORD and CD spectropolarimetry. The two well-defined cleaved products of the H2A-H2B dimer, cH2A-H2B and cH2A-cH2B, exhibited reduced amounts of ordered structure; in the case of the doubly cleaved moiety cH2A-cH2B, the reductions were so pronounced as to suggest marked structural rearrangements.  相似文献   

19.
The three-dimensional structure of the lambda repressor C-terminal domain (CTD) has been determined at atomic resolution. In the crystal, the CTD forms a 2-fold symmetric tetramer that mediates cooperative binding of two repressor dimers to pairs of operator sites. Based upon this structure, a model was proposed for the structure of an octameric repressor that forms both in the presence and absence of DNA. Here, we have determined the structure of the lambda repressor CTD in three new crystal forms, under a wide variety of conditions. All crystals have essentially the same tetramer, confirming the results of the earlier study. One crystal form has two tetramers bound to form an octamer, which has the same overall architecture as the previously proposed model. An unexpected feature of the octamer in the crystal structure is a unique interaction at the tetramer-tetramer interface, formed by residues Gln209, Tyr210 and Pro211, which contact symmetry-equivalent residues from other subunits of the octamer. Interestingly, these residues are also located at the dimer-dimer interface, where the specific interactions are different. The structures thus indicate specific amino acid residues that, at least in principle, when altered could result in repressors that form tetramers but not octamers.  相似文献   

20.
Spinach carbonic anhydrase has been purified by modification and extension of a published method (Pocker, Y., and Ng. J. S. U. (1973) Biochemistry 12, 5127-5134), using (NH4)2SO4 precipitation and chromatography on DEAE-cellulose, agarose, and DEAE-Sephadex. The enzyme so obtained was homogeneous by criteria of both standard and sodium dodecyl sulfate polyacrylamide gel electrophoresis and of constant specific activity throughout the elution profile on DEAE-Sephadex chromatography. The enzyme has an apparent Mr of 212,000 by gel filtration on Sephadex G-200, a Mr of 26,000 by sodium dodecyl sulfate electrophoresis, and each of the subunits contains approximately 1 g atom of zinc. These data and the excellent correlation between the number of lysine and arginine residues per subunit, and the number of tryptic peptides obtained by peptide mapping, suggest that spinach carbonic anhydrase is an octamer consisting of identical or very similar subunits. Its amino acid composition is similar to parsley carbonic anhydrase; both contain large numbers of half-cystine residues relative to erythrocyte carbonic anhydrases. The spinach enzyme is devoid of disulfide bonds. The enzyme is stable around neutrality at -14 degrees, as a suspension in saturated (NH4)2SO4 solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号