首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine T cell epitopes against vaccinia virus (VV) have not been characterized to date in part due to the large and complex genome of VV. We have identified and characterized two CD8+ T cell epitopes on the A47L (modified VV Ankara strain (MVA)-029) and J6R (MVA-043) proteins of VV that are Db and Kb restricted, respectively. Following i.p. immunization with VV New York City Board of Health (NYCBH) strain, MVA-029 peptide-stimulated splenocytes secreted IFN-gamma from 7 days to 7 mo postimmunization, and virus-stimulated effectors were also able to lyse MVA-029-pulsed target cells at the same time points. In contrast, MVA-043 peptide-stimulated splenocytes secreted very low levels of IFN-gamma only at day 7 but maintained the ability to lyse target cells up to 2 mo postimmunization. Both MVA-029 and MVA-043 peptide-stimulated lymph node cells degranulated similarly as assessed by Ag-induced CD107 expression. T cell responses to whole-virus stimulation remained robust and steady during the acute and memory T cell response to VV. Identification of T cell epitopes on VV will enable further studies to increase our understanding of the role of CD8+ T cells in VV infection and assist in the design of new protective strategies.  相似文献   

2.
TAP-independent presentation of CTL epitopes by Trojan antigens   总被引:8,自引:0,他引:8  
The majority of CTL epitopes are derived from intracellular proteins that are degraded in the cytoplasm by proteasomes into peptides that are transported into the endoplasmic reticulum by the TAP complex. These peptides can be further processed into the optimal size (8-10 residues) for binding with nascent MHC class I molecules, generating complexes that are exported to the cell surface. Proteins or peptides containing CTL epitopes can be introduced into the cytoplasm of APCs by linking them to membrane-translocating Trojan carriers allowing their incorporation into the MHC class I Ag-processing pathway. The present findings suggest that these "Trojan" Ags can be transported into the endoplasmic reticulum in a TAP-independent way where they are processed and trimmed into CTL epitopes. Furthermore, processing of Trojan Ags can also occur in the trans-Golgi compartment, with the participation of the endopeptidase furin and possibly with the additional participation of a carboxypeptidase. We believe that these findings will be of value for the design of CTL-inducing vaccines for the treatment or prevention of infectious and malignant diseases.  相似文献   

3.
Processing of exogenous protein Ags by APC leads predominantly to presentation of peptides on class II MHC and, thus, stimulation of CD4+ T cell responses. However, "cross-priming" can also occur, whereby peptides derived from exogenous Ags become displayed on class I MHC molecules and stimulate CD8+ T cell responses. We compared the efficiency of cross-priming with exogenous proteins to use of peptide Ags in human whole blood using a flow cytometry assay to detect T cell intracellular cytokine production. CD8+ T cell responses to whole CMV proteins were poorly detected (compared with peptide responses) in most CMV-seropositive donors. Such responses could be increased by using higher doses of Ag than were required to achieve maximal CD4+ T cell responses. A minority of donors displayed significantly more efficient CD8+ T cell responses to whole protein, even at low Ag doses. These responses were MHC class I-restricted and dependent upon proteosomal processing, indicating that they were indeed due to cross-priming. The ability to efficiently cross-prime was not a function of the number of dendritic cells in the donor's blood. Neither supplementation of freshly isolated dendritic cells nor use of cultured, Ag-pulsed dendritic cells could significantly boost CD8 responses to whole-protein Ags in poorly cross-priming donors. Interestingly, freshly isolated monocytes performed almost as well as dendritic cells in inducing CD8 responses via cross-priming. In conclusion, the efficiency of cross-priming appears to be poor in most donors and is dependent upon properties of the individual's APC and/or T cell repertoire. It remains unknown whether cross-priming ability translates into any clinical advantage in ability to induce CD8+ T cell responses to foreign Ags.  相似文献   

4.
The human herpesvirus 8 (HHV-8) is a gamma herpesvirus with oncogenic potential which establishes a chronic infection that is normally controlled by the immune system of healthy individuals. In particular, CTL responses seem to play a key role in control of the infection. In this study, we characterized epitope-specific CTL responses in healthy HHV-8-seropositive individuals against four HHV-8 lytic Ags: open reading frames (ORF) 26, 70, K3, and K5. We found that the majority of subjects responded to at least one HHV-8 lytic Ag-derived epitope, and some of these epitopes represented dominant targets, suggesting that they could be relevant targets of CTL-mediated immunity in vivo, and may be involved in host control of HHV-8. Specifically, we identified three CTL epitopes from ORF 26, which are presented by HLA-A2, six CTL epitopes from ORF 70 presented by HLA-A2 (three epitopes), -A24 (two epitopes), and -B7 (one epitope), three CTL epitopes from ORF K3 presented by HLA-A2 (two epitopes) and -B7 (one epitope), and one HLA-A2 presented epitope derived from ORF K5. The identified epitopes may be regarded as useful tools for understanding the role of CTL responses to lytic Ags in individuals affected by HHV-8-associated disorders, and for the development of immunotherapies for the treatment/prevention of HHV-8-associated malignancies.  相似文献   

5.
Therapeutic vaccination trials, in which patients with cancer were vaccinated with minimal CTL peptide in oil-in-water formulations, have met with limited success. Many of these studies were based on the promising data of mice studies, showing that vaccination with a short synthetic peptide in IFA results in protective CD8(+) T cell immunity. By use of the highly immunogenic OVA CTL peptide in IFA as a model peptide-based vaccine, we investigated why minimal CTL peptide vaccines in IFA performed so inadequately to allow full optimization of peptide vaccination. Injection of the minimal MHC class I-binding OVA(257-264) peptide in IFA transiently activated CD8(+) effector T cells, which eventually failed to undergo secondary expansion or to kill target cells, as a result of a sustained and systemic presentation of the CTL peptides gradually leaking out of the IFA depot without systemic danger signals. Complementation of this vaccine with the MHC class II-binding Th peptide (OVA(323-339)) restored both secondary expansion and in vivo effector functions of CD8(+) T cells. Simply extending the CTL peptide to a length of 30 aa also preserved these CD8(+) T cell functions, independent of T cell help, because the longer CTL peptide was predominantly presented in the locally inflamed draining lymph node. Importantly, these functional differences were reproduced in two additional model Ag systems. Our data clearly show why priming of CTL with minimal peptide epitopes in IFA is suboptimal, and demonstrate that the use of longer versions of these CTL peptide epitopes ensures the induction of sustained effector CD8(+) T cell reactivity in vivo.  相似文献   

6.
MHC recognition by hapten-specific HLA-A2-restricted CD8+ CTL   总被引:1,自引:0,他引:1  
T cell recognition by peptide-specific alphabeta TCRs involves not only recognition of the peptide, but also recognition of multiple molecular features on the surface of the MHC molecule to which the peptide has been bound. We have previously shown that TCRs that are specific for five different peptides presented by HLA-A2 recognize similar molecular features on the surface of the alpha1 and alpha2 helices of the HLA-A2 molecule. We next asked whether these same molecular features of the HLA-A2 molecule would be recognized by hapten-specific HLA-A2-restricted TCRs, given that hapten-specific T cells frequently show reduced MHC dependence/restriction. The results show that a panel of CD8+ CTL that are specific for the hapten DNP bound to two different peptides presented by HLA-A2 do the following: 1) show stringent MHC restriction, and 2) are largely affected by the same mutations on the HLA-A2 molecule that affected recognition by peptide-specific CTL. A small subset of this panel of CD8+ CTL can recognize a mutant HLA-A2 molecule in the absence of hapten. These data suggest that TCR recognition of a divergent repertoire of ligands presented by HLA-A2 is largely dependent upon common structural elements in the central portion of the peptide-binding site.  相似文献   

7.
We used a TCR-transgenic mouse to investigate whether Th2-mediated airway inflammation is influenced by Ag-specific CD4+CD25+ regulatory T cells. CD4+CD25+ T cells from DO11.10 mice expressed the transgenic TCR and mediated regulatory activity. Unexpectedly, depletion of CD4+CD25+ T cells before Th2 differentiation markedly reduced the expression of IL-4, IL-5, and IL-13 mRNA and protein when compared with unfractionated (total) CD4+ Th2 cells. The CD4+CD25--derived Th2 cells also expressed decreased levels of IL-10 but were clearly Th2 polarized since they did not produce any IFN-gamma. Paradoxically, adoptive transfer of CD4+CD25--derived Th2 cells into BALB/c mice induced an elevated airway eosinophilic inflammation in response to OVA inhalation compared with recipients of total CD4+ Th2 cells. The pronounced eosinophilia was associated with reduced levels of IL-10 and increased amounts of eotaxin in the bronchoalveolar lavage fluid. This Th2 phenotype characterized by reduced Th2 cytokine expression appeared to remain stable in vivo, even after repeated exposure of the animals to OVA aerosols. Our results demonstrate that the immunoregulatory properties of CD4+CD25+ T cells do extend to Th2 responses. Specifically, CD4+CD25+ T cells play a key role in modulating Th2-mediated pulmonary inflammation by suppressing the development of a Th2 phenotype that is highly effective in vivo at promoting airway eosinophilia. Conceivably, this is partly a consequence of regulatory T cells facilitating the production of IL-10.  相似文献   

8.
Soluble MHC-peptide (pMHC) complexes, commonly referred to as tetramers, are widely used to enumerate and to isolate Ag-specific CD8(+) CTL. It has been noted that such complexes, as well as microsphere- or cell-associated pMHC molecules compromise the functional integrity of CTL, e.g., by inducing apoptosis of CTL, which limits their usefulness for T cell sorting or cloning. By testing well-defined soluble pMHC complexes containing linkers of different length and valence, we find that complexes comprising short linkers (i.e., short pMHC-pMHC distances), but not those containing long linkers, induce rapid death of CTL. This cell death relies on CTL activation, the coreceptor CD8 and cytoskeleton integrity, but is not dependent on death receptors (i.e., Fas, TNFR1, and TRAILR2) or caspases. Within minutes of CTL exposure to pMHC complexes, reactive oxygen species emerged and mitochondrial membrane depolarized, which is reminiscent of caspase-independent T cell death. The morphological changes induced during this rapid CTL death are characteristic of programmed necrosis and not apoptosis. Thus, soluble pMHC complexes containing long linkers are recommended to prevent T cell death, whereas those containing short linkers can be used to eliminate Ag-specific CTL.  相似文献   

9.
CD8+ CTL are the predominant tumoricidal effector cells. We find, however, that MHC class I-deficient mice depleted of CD8+ T cells are able to mount an effective antitumor immunity after immunization with fused dendritic/tumor cells. Such immunity appears to be mediated by the generation of phenotypic and functional CD8+ CTL through CD4+ to CD8+ conversion, which we have demonstrated at the single cell level. CD4+ to CD8+ conversion depends on effective in vivo activation and is promoted by CD4+ T cell proliferation. The effectiveness of this process is shown by the generation of antitumor immunity through adoptive transfer of primed CD4 T cells to provide protection against tumor cell challenge and to eliminate established pulmonary metastases.  相似文献   

10.
目的 预测与鉴定烟曲霉抗原Asp f16的HLA-A *0201限制性CD8+细胞毒性T细胞(CTL)抗原表位.方法 以国人常见的HLA-A*0201位点为靶点,依据生物信息学软件扫描烟曲霉特异性抗原Asp f16的全部427个氨基酸序列.使用HLA-A *0201转基因小鼠制备骨髓来源的树突状细胞(DC)和CTL.流式细胞仪技术检测DC表面MHC Ⅱ类抗原,CD80,CD86和CD11c的表达来验证其是否成熟.ELISPOT试验检测烟曲霉抗原多肽特异性CTL产生的细胞因子IFN-γ.四聚体(Tetramer)试验证实烟曲霉特异性CTL与抗原肽,HLA-A*0201分子复合体的亲和性.结果 根据与MHC I类分子结合的半衰期评分,选择了3个HLA-A*0201限制性抗原表位.流式细胞仪分析示成熟DC高表达HLA Ⅱ类抗原,CD80,CD86和CD11c.Tetramer试验证实烟曲霉特异性T细胞受体与抗原肽,HLA-A*0201分子复合体的高亲和性.ELISPOT实验结果 表明烟曲霉抗原肽体外可以活化CD8+CTL,被负载了抗原肽的DC刺激活化后可以产生IFN-γ.结论 本研究成功鉴定烟曲霉抗原Asp f16的HLA-A*0201限制性CD8+CTL表位,可作为疫苗设计的候选表位,为进一步研发新型抗烟曲霉疫苗提供参考.  相似文献   

11.
Ma H  Kapp JA 《Cellular immunology》2001,214(1):89-96
Priming C57BL/6 mice with dominant antigenic peptides of ovalbumin (OVA) or bovine insulin (INS) in complete Freund's adjuvant generates antigen-specific, H-2K(b)-restricted, CD8(+) CTL. OVA-CTL produced type 1 cytokines IFN-gamma and TNF-alpha, whereas INS-CTL produced IL-5 and IL-10 with low levels of IL-4 and IFN-gamma. Here, we investigate whether differential binding affinities of the OVA and INS peptides to H-2K(b) influence the phenotype of the CD8(+) CTL. OVA(257-264) was found to have significantly higher binding affinity than the INS A-chain(12-21) toward K(b). Exchanging the MHC anchor residues between the OVA and INS peptides reversed the K(b) binding capacity of the altered peptides. The lower affinity, altered OVA peptides induced CTL that produced IL-5 and IL-10 in addition to IFN-gamma, whereas high binding affinity, altered INS peptides induced CTL that produced IFN-gamma but not IL-5 or IL-10. These data suggest that MHC binding affinity of peptides can regulate the phenotype of the resulting CD8(+) T cells.  相似文献   

12.
Gammadelta T cells are present in the mucosal intestinal epithelia and secrete factors necessary to maintain tissue integrity. Ags recognized by these cells are poorly defined, although in mice non-classical MHC class I molecules have been implicated. Since MHC class I-like CD1 receptors are widely expressed at the surface of epithelial and dendritic intestinal cells and have the capacity to present lipid Ags to T cells, we hypothesized that these molecules might present autologous and/or exogenous phospholipids to intestinal gammadelta T lymphocytes. Intraepithelial T lymphocytes from normal human duodenal mucosal biopsies were cloned and exposed to natural and synthetic phospholipids using CD1a-, CD1b-, CD1c- or CD1d-transfected C1R lymphoblastoid or HeLa cell lines as APCs. Their cytolytic properties and regulatory cytokine secretion were also examined. Most clones obtained from duodenal mucosa (up to 70%) were TCRalphabeta+, and either CD4+ or CD8+, whereas 20% were CD4-CD8- (6 clones) or TCRgammadelta+ (12 clones). A relevant percentage (up to 66%) of TCRgammadelta+ but few (<5%) TCRalphabeta+ T cell clones responded to synthetic and/or natural phospholipids presented by CD1 molecules, as measured by both [(3)H]thymidine incorporation and IL-4 release assays. A Th1-like cytolytic and functional activity along with the ability to secrete regulatory cytokines was observed in most phospholipid-specific gammadelta T cell clones. Thus, a substantial percentage of TCRgammadelta+ but few TCRalphabeta+ from human duodenal mucosa recognize exogenous phospholipids in a CD1-restricted fashion. This adaptive response could contribute to mucosal homeostasis, but could also favor the emergence of inflammatory or allergic intestinal diseases.  相似文献   

13.
Memory CD8+ T cells protect dendritic cells from CTL killing   总被引:1,自引:0,他引:1  
CD8(+) T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8(+) T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8(+) T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4(+) and CD8(+) T cell populations. Moreover, memory CD8(+) T cells that release the DC-activating factor TNF-alpha before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4(+) Th cells. The currently identified DC-protective function of memory CD8(+) T cells helps to explain the phenomenon of CD8(+) T cell memory, reduced dependence of recall responses on CD4(+) T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization.  相似文献   

14.
Human CD8+ CTL specific for the mycobacterial major secreted antigen 85A   总被引:9,自引:0,他引:9  
The role of CD8(+) CTL in protection against tuberculosis in human disease is unclear. In this study, we stimulated the peripheral blood mononuclear cells of bacillus Calmette-Guérin (BCG)-vaccinated individuals with live Mycobacterium bovis BCG bacilli to establish short-term cell lines and then purified the CD8(+) T cells. A highly sensitive enzyme-linked immunospot (ELISPOT) assay for single cell IFN-gamma release was used to screen CD8(+) T cells with overlapping peptides spanning the mycobacterial major secreted protein, Ag85A. Three peptides consistently induced a high frequency of IFN-gamma responsive CD8(+) T cells, and two HLA-A*0201 binding motifs, P(48-56) and P(242-250), were revealed within the core sequences. CD8(+) T cells responding to the 9-mer epitopes were visualized within fresh blood by ELISPOT using free peptide or by binding of HLA-A*0201 tetrameric complexes. The class I-restricted CD8(+) T cells were potent CTL effector cells that efficiently lysed an HLA-A2-matched monocyte cell line pulsed with peptide as well as autologous macrophages infected with Mycobacterium tuberculosis or recombinant vaccinia virus expressing the whole Ag85A protein. Tetramer assays revealed a 6-fold higher frequency of peptide-specific T cells than IFN-gamma ELISPOT assays, indicating functional heterogeneity within the CD8(+) T cell population. These results demonstrate a previously unrecognized, MHC class I-restricted, CD8(+) CTL response to a major secreted Ag of mycobacteria and supports the use of Ag85A as a candidate vaccine against tuberculosis.  相似文献   

15.
Avian influenza virus (AIV) infection is a continuing threat to both humans and poultry. Influenza virus specific CD8+ T cells are associated with protection against homologous and heterologous influenza strains. In contrast to what has been described for humans and mice, knowledge on epitope-specific CD8+ T cells in chickens is limited. Therefore, we set out to identify AIV-specific CD8+ T-cell epitopes. Epitope predictions based on anchor residues resulted in 33 candidate epitopes. MHC I inbred chickens were infected with a low pathogenic AIV strain and sacrificed at 5, 7, 10 and 14 days post infection (dpi). Lymphocytes isolated from lung, spleen and blood were stimulated ex vivo with AIV-specific pooled or individual peptides and the production of IFNγ was determined by ELIspot. This resulted in the identification of 12 MHC B12-restricted, 3 B4-restricted and 1 B19-restricted AIV- specific CD8+ T-cell epitopes. In conclusion, we have identified novel AIV-derived CD8+ T-cell epitopes for several inbred chicken strains. This knowledge can be used to study the role of CD8+ T cells against AIV infection in a natural host for influenza, and may be important for vaccine development.  相似文献   

16.
Coxiella burnetii is an obligate intracellular gram-negative bacterium that causes acute Q fever and chronic infections in humans. A killed, whole cell vaccine is efficacious, but vaccination can result in severe local or systemic adverse reactions. Although T cell responses are considered pivotal for vaccine derived protective immunity, the epitope targets of CD4(+) T cell responses in C. burnetii vaccination have not been elucidated. Since mapping CD4(+) epitopes in a genome with over 2,000 ORFs is resource intensive, we focused on 7 antigens that were known to be targeted by antibody responses. 117 candidate peptides were selected from these antigens based on bioinformatics predictions of binding to the murine MHC class II molecule H-2 IA(b). We screened these peptides for recognition by IFN-γ producing CD4(+) T cell in phase I C. burnetii whole cell vaccine (PI-WCV) vaccinated C57BL/6 mice and identified 8 distinct epitopes from four different proteins. The identified epitope targets account for 8% of the total vaccination induced IFN-γ producing CD4(+) T cells. Given that less than 0.4% of the antigens contained in C. burnetii were screened, this suggests that prioritizing antigens targeted by antibody responses is an efficient strategy to identify at least a subset of CD4(+) targets in large pathogens. Finally, we examined the nature of linkage between CD4(+) T cell and antibody responses in PI-WCV vaccinated mice. We found a surprisingly non-uniform pattern in the help provided by epitope specific CD4(+) T cells for antibody production, which can be specific for the epitope source antigen as well as non-specific. This suggests that a complete map of CD4(+) response targets in PI-WCV vaccinated mice will likely include antigens against which no antibody responses are made.  相似文献   

17.
A priority in current vaccine research is the development of adjuvants that support the efficient priming of long-lasting, CD4(+) T cell help-independent CD8(+) T cell immunity. Oligodeoxynucleotides (ODN) with immune-stimulating sequences (ISS) containing CpG motifs facilitate the priming of MHC class I-restricted CD8(+) T cell responses to proteins or peptides. We show that the adjuvant effect of ISS(+) ODN on CD8(+) T cell priming to large, recombinant Ag is enhanced by binding them to short, cationic (arginine-rich) peptides that themselves have no adjuvant activity in CD8(+) T cell priming. Fusing antigenic epitopes to cationic (8- to 10-mer) peptides bound to immune-stimulating ISS(+) ODN or nonstimulating NSS(+) ODN (without CpG-containing sequences) generated immunogens that efficiently primed long-lasting, specific CD8(+) T cell immunity of high magnitude. Different MHC class I-binding epitopes fused to short cationic peptides of different origins showed this adjuvant activity. Quantitative ODN binding to cationic peptides strikingly reduced the toxicity of the latter, suggesting that it improves the safety profile of the adjuvant. CD8(+) T cell priming supported by this adjuvant was Toll-like receptor 9 dependent, but required no CD4(+) T cell help. ODN (with or without CpG-containing sequences) are thus potent Th1-promoting adjuvants when bound to cationic peptides covalently linked to antigenic epitopes, a mode of Ag delivery prevailing in many viral nucleocapsids.  相似文献   

18.
High-avidity interactions between TCRs and peptide + class I MHC (pMHCI) epitopes drive CTL activation and expansion. Intriguing questions remain concerning the constraints determining optimal TCR/pMHCI binding. The present analysis uses the TCR transgenic OT-I model to assess how varying profiles of TCR/pMHCI avidity influence naive CTL proliferation and the acquisition of effector function following exposure to the cognate H-2K(b)/OVA(257-264) (SIINFEKL) epitope and to mutants provided as peptide or in engineered influenza A viruses. Stimulating naive OT-I CD8(+) T cells in vitro with SIINFEKL induced full CTL proliferation and differentiation that was largely independent of any need for costimulation. By contrast, in vitro activation with the low-affinity EIINFEKL or SIIGFEKL ligands depended on the provision of IL-2 and other costimulatory signals. Importantly, although they did generate potent endogenous responses, infection of mice with influenza A viruses expressing these same OVA(257) variants failed to induce the activation of adoptively transferred naive OT-I CTLps, an effect that was only partially overcome by priming with a lipopeptide vaccine. Subsequent structural and biophysical analysis of H2-K(b)OVA(257), H2-K(b)E1, and H2-K(b)G4 established that these variations introduce small changes at the pMHCI interface and decrease epitope stability in ways that would likely impact cell surface presentation and recognition. Overall, it seems that there is an activation threshold for naive CTLps, that minimal alterations in peptide sequence can have profound effects, and that the antigenic requirements for the in vitro and in vivo induction of CTL proliferation and effector function differ substantially.  相似文献   

19.
Understanding immune mechanisms influencing cancer regression, recurrence, and metastasis may be critical to developing effective immunotherapy. Using a tumor expressing HIV gp160 as a model viral tumor Ag, we found a growth-regression-recurrence pattern, and used this to investigate mechanisms of immunosurveillance. Regression was dependent on CD8 T cells, and recurrent tumors were resistant to CTL, had substantially reduced expression of epitope mRNA, but retained the gp160 gene, MHC, and processing apparatus. Increasing CTL numbers by advance priming with vaccinia virus expressing gp160 prevented only the initial tumor growth but not the later appearance of escape variants. Unexpectedly, CD4 cell depletion protected mice from tumor recurrence, whereas IL-4 knockout mice, deficient in Th2 cells, did not show this protection, and IFN-gamma knockout mice were more susceptible. Purified CD8 T cells from CD4-depleted mice following tumor regression had more IFN-gamma mRNA and lysed tumor cells without stimulation ex vivo, in contrast to CD4-intact mice. Thus, the quality as well as quantity of CD8+ CTL determines the completeness of immunosurveillance and is controlled by CD4 T cells but not solely Th2 cytokines. This model of immunosurveillance may indicate ways to enhance the efficacy of surveillance and improve immunotherapy.  相似文献   

20.
Stimulation of PBMC, in children recovering from acute measles, with autologous EBV-transformed and measles virus (MV)-infected lymphoblastoid cell lines (B-LCL) expanded primarily MV-specific CD8+ T cells. A large number of CD8+ T cell clones were obtained either by passaging of bulk cultures at limiting dilutions or by direct cloning of PBMC without previous stimulation in bulk culture. The MV-specific CD8+ T cell clones responding in a proliferative and a CTL assay were found to be class I MHC restricted. In contrast, CD4+ MV-specific T cell clones, which were generated by the same protocol, recognized MV in association with class II MHC molecules. Analysis of processing requirements for Ag presentation to CD8+ and CD4+ T cell clones, measured by the effect of chloroquine in a proliferative T cell response, revealed that both types of T cells recognized MV Ag processed via the endogenous/cytoplasmic pathway. Thus, these studies indicate that, as in most other viral infections and in contrast to previous suggestions, the class I MHC-restricted CTL response by CD8+ T cells may be an important factor in the control and elimination of MV infection. Therefore, the role proposed for CD4+ class II-restricted T cells in recovery from measles needs to be reevaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号