首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
V. D. Appanna  H. Finn 《Biometals》1995,8(2):142-148
Pseudomonas fluorescens multiplied in a minimal mineral medium supplemented with iron(III) (5 mm) complexed to citrate, the sole source of carbon, with no apparent diminution in cellular mass. Atomic absorption studies of different cellular fractions and supernatant at various growth intervals revealed that the trivalent metal was initially internalized. At approximately 41 h of incubation, the soluble cellular extract contained 9.5% of the iron originally found in the growth medium. However, as bacterial multiplication progressed, most of the metal was deposited as an extracellular insoluble gelatinous residue. Phosphatidylethanolamine appeared to be an important organic constituent of this precipitate. X-ray fluorescence and diffraction studies revealed that iron(III) was deposited as amorphous hydrated oxide. Scanning electron microscopy and energy dispersive X-ray microanalysis of the pellet aided in the identification of irregular shaped bodies rich in iron and oxygen that were associated with carbon-containing elongated structures. Examination of the bacterial cells by a transmission electron microscope equipped with an electron energy loss spectrometer indicated the deposition of iron within the cells.  相似文献   

2.
Pseudomonas syringae cultured in a defined citrate medium supplemented with 1 mM aluminium, chromium and manganese, respectively, appeared to elicit disparate biochemical responses. At the stationary phase of growth aluminium was predominantly present as an insoluble residue. Although virtually none of this metallic element was detected in the supernatant, the bacterial cells appeared to contain some aluminium. Following the initial uptake of chromium the microbe secreted the metal in the supernatant. Only a small fraction of the chromium was localised in the bacterial cells; 91% manganese was biotransformed into an insoluble pellet. No citrate was detected in the exocellular fluid at cessation of cellular growth.  相似文献   

3.
The hyperthermophilic archaeon Pyrobaculum aerophilum used 20 mM Fe(III) citrate, 100 mM poorly crystalline Fe(III) oxide, and 10 mM KNO3 as terminal electron acceptors. The two forms of iron were reduced at different rates but with equal growth yields. The insoluble iron was reduced when segregated spatially by dialysis tubing, indicating that direct contact with the iron was not necessary for growth. When partitioned, there was no detectable Fe(III) or Fe(II) outside of the tubing after growth, suggesting that an electron shuttle, not a chelator, may be used as an extracellular mediator of iron reduction. The addition of 25 and 50% (vol vol(-1)) cell-free spent insoluble iron media to fresh media led to growth without a lag phase. Liquid chromatography analysis of spent media showed that cultures grown in iron, especially insoluble iron, produced soluble extracellular compounds that were absent or less abundant in spent nitrate medium. NADH-dependent ferric reductase activity increased approximately 100-fold, while nitrate reductase activity decreased 10-fold in whole-cell extracts from iron-grown cells relative to those from nitrate-grown cells, suggesting that dissimilatory iron reduction was regulated. A novel 2,6-anthrahydroquinone disulfonate oxidase activity was more than 580-fold higher in iron-grown cells than in nitrate-grown cells. The activity was primarily (>95%) associated with the membrane cellular fraction, but its physiological function is unknown. Nitrate-grown cultures produced two membrane-bound, c-type cytochromes that are predicted to be monoheme and part of nitrite reductase and a bc1 complex using genome analyses. Only one cytochrome was present in cells grown on Fe(III) citrate whose relative abundance was unchanged.  相似文献   

4.
In order to investigate the activation of lipoxygenase and to clarify the role of the oxygenation product hydroperoxide in this process, the effect of 13-hydroperoxylinoleic acid (P, 0-35 microM) on linoleic acid (S, 1-80 microM) oxygenation catalysis by 12 nM lipoxygenase-1 from soybean was studied at pH 10, 25 degrees C, and 240 microM O2 with rapid kinetic techniques. The following observations were made: (1) Iron(II) and iron(III) lipoxygenases are kinetically different: reactions started with the Fe(II) enzyme form show a lag phase, whereas iron(III) lipoxygenase induces an initial burst. (2) Oxidation of the enzyme alone is not sufficient to abolish the lag phase: at [S] greater than 50 microM, the initial burst in the iron(III) lipoxygenase curves is still followed by a lag. The lag phase disappears completely only in the presence of micromolar quantities of P. (3) The approximate dissociation constants for S and P are 15 and 24 microM, respectively, 1 order of magnitude smaller than the corresponding values in the absence of oxygen. The observed kinetics are predicted by numerical integration of the rate equations of a model based on the single lipid binding site mechanism for the anaerobic lipoxygenase reaction [Ludwig et al. (1987) Eur. J. Biochem. 168, 325-337; Verhagen et al. (1978) Biochim. Biophys. Acta 529, 369-379]. A quasi-steady-state approximation of the model suggests that a high [S]/[P] the fraction of active iron(III) lipoxygenase is small and that, therefore, a lag phase is intrinsic to the mechanism.  相似文献   

5.
The effects of iron limitation on growth, the composition and function of the respiratory chains, and gallium uptake inEscherichia coli have been studied. Decreasing the iron concentration in a defined medium using Chelex resin gave lower growth yields in both continuous culture and prolonged batch culture. In the former, ironlimited (entering [Fe]2.0 M) cells exhibited diminished respiration rates, respiration-driven proton translocation quotients, and levels of non-haem iron and cytochromes. The cellular concentration of haemoproteinb-590 (a cytochromea 1-like hydroperoxidase) decreased 20-fold on iron limitation, whilst a CO-binding pigment with an absorption maximum in the dithionite-treated form near 500 nm appeared. Gallium(III) (9 M) added to iron-limited, but not iron-sufficient, cultures diminished growth yields further; cells grown with low entering concentrations of iron took up less gallium than iron-sufficient cells. These results are attributed to the interference by gallium(III) with siderophore-mediated metal uptake. Gallium also stimulated iron uptake and was itself accumulated by iron-sufficient cells, suggesting that gallium(III) also affects the iron transport system(s) of low affinity.  相似文献   

6.
目的:研究壳寡糖对乳酸杆菌体外生长的影响。方法:将乳酸杆菌MRS培养基中的葡萄糖替换为壳寡糖及向原培养基中加入适量的壳寡糖,通过测定OD值比较乳酸杆菌的生长状况。结果:以壳寡糖完全代替葡萄糖的培养基中乳酸杆菌的生长状况不如MRS培养基,而少量壳寡糖与葡萄糖协同的培养条件使乳酸杆菌的生长适应期明显减短,促进其生长。结论:乳酸杆菌对壳寡糖的利用不如对葡萄糖的利用,1g/l壳寡糖与葡萄糖协同作用时可明显缩短乳酸杆菌的生长适应期,促进细菌生长。  相似文献   

7.
Gallium(III) is a new therapeutic agent for hypercalcemia. Ga3+ reduces osteoclast action, but how it inhibits the cell's physiology is unknown. In vivo, 7-12 microM Ga(III) reduces calcium release from bone, but surprisingly, 10-100 microM Ga3+ added to isolated avian osteoclasts did not reduce their degradation of L-(5-3H)-proline bone. 3H-proline labels bone collagen specifically, and collagenolysis is an excellent indicator of bone dissolution because collagen is the least soluble component of bone. Ga(III) greater than 100 microM inhibited osteoclasts in vitro, but also killed the cells. To resolve this apparent conflict, we measured 67Ga distribution between bone, cells, and media. Gallium binds avidly but slowly to bone fragments. One hundred micrograms of bone clears 60% of 1 microM gallium from 500 microliters of tissue culture medium, with steady state at greater than 24 h. Osteoclasts on bone inhibited gallium binding capacity approximately 40%, indicating a difference in available binding area and suggesting that osteoclasts protect their substrate from Ga binding. Less gallium binds to bone in serum-containing medium than in phosphate-buffered saline; 30% reduction of the affinity constant suggests that the serum containing medium competes with bone binding. Consequently, the effect of [Ga] on bone degradation was studied using accurately controlled amounts of Ga(III) pre-bound to the bone. Under these conditions, gallium sensitivity of osteoclasts is striking. At 2 days, 100 micrograms of bone pre-incubated with 1 ml of 1 microM Ga3+, with 10 pmoles Ga3+/micrograms bone, was degraded at 50% the rate of control bone; over 50 pM Ga3+/micrograms bone, resorption was essentially zero. In contrast, pre-treatment of bone with [Ga3+] as high as 15 microM had no significant effect on bone resorption rate beyond 3 days, indicating that gallium below approximately 150 pg/micrograms bone acts for a limited time and does not permanently damage the cells. We conclude that bone-bound Ga(III) from medium concentrations less than 15 microM inhibits osteoclasts reversibly, while irreversible toxicity occurs at solution [Ga3+] greater than 50 microM.  相似文献   

8.
Cell-envelope fractions were isolated from the rapidly growing saprophyte Mycobacterium smegmatis following growth in glycerol/asparagine medium under both iron-limited (0.02 microgram Fe ml-1) and iron-sufficient (2.0 to 4.0 micrograms Fe ml-1) conditions. Examination of these preparations by SDS-PAGE demonstrated the production of at least four additional proteins when iron was limiting. These iron-regulated envelope proteins (IREPs) were ascribed apparent molecular masses of 180 kDa (protein I), 84 kDa (protein II), 29 kDa (protein III) and 25 kDa (protein IV). All four proteins were present in both cell-wall and membrane preparations but spheroplast preparations were devoid of the 29 kDa protein. Attempts at labelling the proteins with 55FeCl3 or 55Fe-exochelin, the siderophore for iron uptake, were unsuccessful, though this was attributed to the denatured state of the proteins following electrophoresis. Antibodies were raised to each of the four proteins: the one raised to protein III inhibited exochelin-mediated iron uptake into iron-deficiently grown cells by 70% but was ineffective against iron uptake into iron-sufficiently grown cells. As exochelin is taken up into both types of cells by a similar process, protein III may not be a simple receptor for iron uptake though the results imply some function connected with this process. The role of the other IREPs is less certain.  相似文献   

9.
Bifidobacterium breve transports ferrous iron in preference to the ferric form in a saturable, concentration-dependent manner with an optimum pH of 6. Iron transport is highly temperature sensitive. Two transport systems with apparent Km's of 86 +/- 27 and 35 +/- 20 microM (p greater than 0.01) were distinguished, one operating at high iron concentrations, the other at low iron concentrations. Iron uptake could not be accounted for by surface binding. Uptake of iron was inhibited by iron chelators, a protein ionophore, and ATPase inhibitors, and it was stimulated by potassium ionophores. The presence of a ferri reductase in the insoluble cell fraction of B. breve and its "spent" growth medium was demonstrated. The hypothesis is presented that iron uptake by bifidobacteria is related to the nutritional immunity phenomenon.  相似文献   

10.
11.
Derepressed cells of Saccharomyces mellis were treated in one of several different ways to either elute or inactivate the exocellular enzyme, acid phosphatase. The enzyme was either (i) eluted from resting cells with 0.5 m KCl plus 0.1% beta-mercaptoethanol, (ii) eluted from exponential phase cells by growing the organism in derepressing media containing 0.5 m KCl, or (iii) inactivated on exponential phase cells by adding sufficient acid or base to growth media to destroy the enzyme but not enough to kill the cells. These treatments did not affect viability. Treated cells were transferred to fresh growth media or some other reaction mixture, and the kinetics of recovery of acid phosphatase activity was studied. In these reaction mixtures, enzyme was synthesized only by actively growing cells. Treated resting cells were indistinguishable from untreated, repressed resting cells in that the organism inoculated into complete growth medium remained in the lag phase for approximately 6 hr before both growth and enzyme synthesis began. Exponential phase derepressed cells treated by method (ii) or (iii) were transferred to fresh medium under conditions that allowed growth to continue. The cells immediately started to manufacture enzyme at a rate greater than normal until the steady-state level was reached, thus demonstrating a feedback control system. Exponential phase repressed cells were also transferred to fresh derepressing media under conditions which sustained growth. Though these cells began to grow immediately, there was a lag before acid phosphatase synthesis began followed by a lengthy inductive period. The length of the period of induction could be correlated with the polyphosphate content of the cells. As the supply of polyphosphate neared exhaustion, the rate of synthesis increased rapidly until it was greater than normal; this differential rate was sustained until the steady-state concentration was reached. When derepressed cells grow in a medium containing 0.5 m KCl, some acid phosphatase activity is found free in the culture fluid and some remains firmly attached to the cells despite the presence of the salt. The bound activity is subject to feedback control, but the steady-state level of this activity on the cells is only one-third that of the acid phosphatase on cells growing in nonsaline media. The extracellular phosphatase is produced at a rate that is several-fold greater than that of the exocellular enzyme in a nonsaline medium. The synthesis of the extracellular enzyme does not seem to be controlled by a feedback mechanism but is produced at a maximal rate as long as the cells are growing.  相似文献   

12.
Abstract Cell multiplication and growth of Saccharomyces cereviseae were followed in 2-ml test tubes containing Wickerham's synthetic medium or very dilute synthetic media supplemented in various ways. The ability of the cell cultures to leave the lag phase and enter the exponential phase of growth was investigated. Multiplication was assessed by microscopical observation. The results showed great differences in times required for the cultures to leave the lag phases and begin multiplication. In Wickerham's medium, all cultures grew well 6 h after inoculation. In the dilute medium, several days elapsed before all the cultures grew. These cultures went into exponential growth with approximately first order kinetics. In the unsupplemented medium, the 'half-lives' in the lag phase were about 28 h. Addition of either Ca2+ or Ca2+ plus A23187 (calcimycin) reduced the half-lives to 10 and 6 h, respectively. The doubling times in the exponential phases of growth were not shortened by these additions. We suggest that Ca2+ plays a crucial role as a signal to switch on the mode of cell proliferation in S. cerevisiae .  相似文献   

13.
This study showed that the minimum latent period (20 minutes) of the intracellular multiplication of dysentery bacteriophage S-9 in the population of S. sonnei substrate strain under the conditions of static heterogeneous surface batch cultivation was observed at the end of the lag phase and at the growth acceleration phase, in the first and second thirds of the exponential curve, while the maximum latent period (35-40 minutes) was observed at the stationary phase. The maximum yield of phage S-9 from one infected bacterial cell (628.3 +/- 116.8) was registered during the first third of the phase of the exponential growth of the bacterial population and the minimum yield (18.66 +/- 6.6), at the beginning of the lag phase. The significant direct correlation between the specific growth rate of the bacterial population and the yield of the phage from one infected bacterial cell at the end of the lag phase, at the growth acceleration and deceleration phases, as well as the significant inverse correlation between the yield of the phage and the time of the generation of the bacterial population at the growth acceleration phase were established.  相似文献   

14.
Summary The role of various iron chelators on the multiplication of mouse hybridoma cells in an albumin-free, transferrin-deficient defined medium was investigated. Fe(III)-dihydroxyethylglycine, Fe(III)-glycylglycine, Fe(III)-ethylenediamine-N,N′-dipropionic acid, or Fe(III)-iminodiacetic acid supported the excellent growth of the cells. In addition, the growth of the iron-starved cells, which had been preincubated in a protein-, iron- and chelator-free defined medium, restored rapidly when the medium was supplemented with holotransfeerrin, ferric iron, and chelator compared to that when supplemented with holotransferin, but without iron and chelator. The results suggest that such chelators modulate a progression of transferrn cycle in the presence of transferin and ferric iron. An alternative explantation is that there is a decrease in generation of iron-catalyzed free radicals.  相似文献   

15.
An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese.  相似文献   

16.
An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese.  相似文献   

17.
SUMMARY: The rates of growth of bacteria on Hevea latex systems in the presence and absence of ammonia have been derived from colony count data obtained on a modified Kligler's iron agar medium. For fresh latex, ammoniated field latex, and ammoniated latex concentrate, variations in the bacterial populations encountered are given for a period of about one year's testing, with some data on commercial samples of latex concentrate. Field latex at routine collection contained about 8 × 106 bacteria/ml. This could be reduced by 62% by the use of sterile tapping cups. In the routine latex, the mixed population grew logarithmically after a lag phase of 2·1/2–3 hr. In clean latex the lag phase was extended to 4 hr. On ammoniation to 0.3% (w/w), the population was reduced over about 2 hr, but subsequently logarithmic growth recurred, without a lag phase. On concentration and further ammoniation to 0·7% (w/w), the count dropped still further, levels of 10/ml or less being achieved in clean conditions, but very slow logarithmic growth again occurred with a lag phase preceding it.  相似文献   

18.
The toxicity of misonidazole (MISO) to hypoxic Chinese hamster ovary (CHO) cells in serum-free medium is enhanced by Fe(III)-EDTA. Enhancement of MISO cytotoxicity by a factor of 1.6 was seen with 2 microM Fe(III)-EDTA, while 200 microM Fe(III)-EDTA results in sensitization by a factor of 2.0. Treatment of CHO cells with the iron chelator desferal resulted in protection against the hypoxic cytotoxicity in MISO (approximate protection factor of 2.5 with 100 microM desferal). Similar results were obtained with Chinese hamster V79 cells. Fe(III)-EDTA also enhanced binding of [2-14C] MISO to cellular macromolecules while desferal decreased binding of MISO to cellular macromolecules. These results suggest that iron plays an important role in the reductive metabolism of MISO and that modification of the intracellular metal ion status may be a useful approach to modulating the biological effect of nitro compounds.  相似文献   

19.
The ciliate Tetrahymena thermophila was starved for orthophosphate in a synthetic medium at pH 7.5. These cells did not utilize phosphorylcholine, final concentration 1 mM, as a phosphate source for cell growth and multiplication. If the phosphorylcholine solution, however, was incubated for 24 h at pH 5.5 with extracellular, "spent" medium from a culture in early stationary phase of growth, then it promoted culture growth readily at pH 7.5. It was shown that the spent medium in the same concentration did not stimulate growth in itself. It is concluded that extracellular digestion of phosphorylcholine enabled the cells to grow and multiply in a nutrient medium having organic phosphate compounds as the only phosphate source. It is argued that the phosphatases in the spent medium are of lysosomal origin.  相似文献   

20.
Rubrerythrin was purified by multistep chromatography under anaerobic, reducing conditions from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimer with a molecular mass of 39.2 kDa and contains 2.9 +/- 0.2 iron atoms per subunit. The purified protein had peroxidase activity at 85 degrees C using hydrogen peroxide with reduced P. furiosus rubredoxin as the electron donor. The specific activity was 36 micromol of rubredoxin oxidized/min/mg with apparent K(m) values of 35 and 70 microM for hydrogen peroxide and rubredoxin, respectively. When rubrerythrin was combined with rubredoxin and P. furiosus NADH:rubredoxin oxidoreductase, the complete system used NADH as the electron donor to reduce hydrogen peroxide with a specific activity of 7.0 micromol of H(2)O(2) reduced/min/mg of rubrerythrin at 85 degrees C. Strangely, as-purified (reduced) rubrerythrin precipitated when oxidized by either hydrogen peroxide, air, or ferricyanide. The gene (PF1283) encoding rubrerythrin was expressed in Escherichia coli grown in medium with various metal contents. The purified recombinant proteins each contained approximately three metal atoms/subunit, ranging from 0.4 Fe plus 2.2 Zn to 1.9 Fe plus 1.2 Zn, where the metal content of the protein depended on the metal content of the E. coli growth medium. The peroxidase activities of the recombinant forms were proportional to the iron content. P. furiosus rubrerythrin is the first to be characterized from a hyperthermophile or from an archaeon, and the results are the first demonstration that this protein functions in an NADH-dependent, hydrogen peroxide:rubredoxin oxidoreductase system. Rubrerythrin is proposed to play a role in the recently defined anaerobic detoxification pathway for reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号