首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Streptococcus pneumoniae is a major human pathogen and many interactions of this bacterium with its host appear to be mediated, directly or indirectly, by components of the bacterial cell wall, specifically by the phosphorylcholine residues which serve as anchors for surface-located choline-binding proteins and are also recognized by components of the host response, such as the human C-reactive protein, a class of myeloma proteins and PAF receptors. In the present study, we describe the identification of the pneumococcal pce gene encoding for a teichoic acid phosphorylcholine esterase (Pce), an enzymatic activity capable of removing phosphorylcholine residues from the cell wall teichoic acid and lipoteichoic acid. Pce carries an N-terminal signal sequence, contains a C-terminal choline-binding domain with 10 homologous repeating units similar to those found in other pneumococcal surface proteins, and the catalytic (phosphorylcholine esterase) activity is localized on the N-terminal part of the protein. The mature protein was overexpressed in Escherichia coli and purified in a one-step procedure by choline-affinity chromatography and the enzymatic activity was followed using the chromophoric p-nitrophenyl-phosphorylcholine as a model substrate. The product of the enzymatic digestion of 3H-choline-labelled cell walls was shown to be phosphorylcholine. Inactivation of the pce gene in S. pneumoniae strains by insertion-duplication mutagenesis caused a unique change in colony morphology and a striking increase in virulence in the intraperitoneal mouse model. Pce may be a regulatory element involved with the interaction of S. pneumoniae with its human host.  相似文献   

2.
The teichoic acid synthesized by Streptococcus pneumoniae serotype 5, also known as pneumococcal common antigen (C-polysaccharide), was purified. On the basis of compositional analysis, HPAEC-PAD analysis, MALDI-TOF mass spectrometry and NMR spectroscopy, made on the native polysaccharide and on the dephosphorylated repeating unit, the following structure is proposed: [structure: see text]. This C-polysaccharide (C-PS), differs from those previously described by the replacement of Glc by Gal in its repeating unit structure.  相似文献   

3.
Pneumococcal surface protein A (PspA) of Streptococcus pneumoniae has been found to utilize a novel mechanism for anchoring to the bacterial cell surface. In contrast to that of surface proteins from other gram-positive bacteria, PspA anchoring required choline-mediated interactions between the membrane-associated lipoteichoic acid and the C-terminal repeat region of PspA. Release of PspA from the cell surface could be effected by deletion of 5 of the 10 C-terminal repeat units, by high concentrations of choline, or by growth in choline-deficient medium. Other pneumococcal proteins, including autolysin, which has a similar C-terminal repeat region, were not released by these treatments. The attachment mechanism utilized by PspA thus appears to be uniquely adapted to exploit the unusual structure of the pneumococcal cell surface. Further, it has provided the means for rapid and simple isolation of immunogenic PspA from S. pneumoniae.  相似文献   

4.
Lipoteichoic acid- and teichoic acid-containing muropeptides were isolated from choline- or ethanolamine-grown cells of the choline-independent mutant JY2190 of Streptococcus pneumoniae. Choline was taken up and incorporated into lipoteichoic acid and teichoic acid with 81% efficiency, compared with the parent strain Rx1. With similar efficiency, ethanolamine was incorporated. Accordingly, the mutant is a valuable tool for identifying the individual genes encoding the enzymes of choline utilisation, because any of these genes can be deleted without affecting viability and growth rate.  相似文献   

5.
Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens.  相似文献   

6.
Release of conserved cytoplasmic proteins is widely spread among Gram-positive and Gram-negative bacteria. Because these proteins display additional functions when located at the bacterial surface, they have been qualified as moonlighting proteins. The GAPDH is a glycolytic enzyme which plays an important role in the virulence processes of pathogenic microorganisms like bacterial invasion and host immune system modulation. However, GAPDH, like other moonlighting proteins, cannot be secreted through active secretion systems since they do not contain an N-terminal predicted signal peptide. In this work, we investigated the mechanism of GAPDH export and surface retention in Streptococcus pneumoniae, a major human pathogen. We addressed the role of the major autolysin LytA in the delivery process of GAPDH to the cell surface. Pneumococcal lysis is abolished in the ΔlytA mutant strain or when 1% choline chloride is added in the culture media. We showed that these conditions induce a marked reduction in the amount of surface-associated GAPDH. These data suggest that the presence of GAPDH at the surface of pneumococcal cells depends on the LytA-mediated lysis of a fraction of the cell population. Moreover, we demonstrated that pneumococcal GAPDH binds to the bacterial cell wall independently of the presence of the teichoic acids component, supporting peptidoglycan as a ligand to surface GAPDH. Finally, we showed that peptidoglycan-associated GAPDH recruits C1q from human serum but does not activate the complement pathway.  相似文献   

7.
The peptidoglycan of Staphylococcus aureus contains relatively short glycan chains and is highly cross-linked via its peptide chains. The material from wild-type (strain H) and mutants H28, H4B and MR-1 was freed from the teichoic-acid-linked component and then hydrolysed by Chalaropsis muramidase to yield disaccharide-repeating units of the glycan with attached peptides either non-cross-linked (monomer) or joined to similar units by one (dimer), two (trimer) or more (oligomer) peptide cross links. The resulting fragments were separated by high-resolution HPLC so that distinguishable components as large as nonamer could be identified. Extrapolation showed that, in S. aureus H, H28 and MR-1, oligomers at least as large as eicosamer formed part of the smooth distribution of oligomer fragments, whereas in strain H4B (PBP4-) the maximum size was around dodecamer. The oligomer distribution profile was related to the polymerization theories of Flory, which allow a distinction to be made between a monomer addition model, whereby each oligomer can only be synthesized by the addition of a single monomer unit to its next lower homologue, and a random addition model, in which an oligomer can be formed by linkage of any combination of its constituent smaller units. In S. aureus close approximation to the random addition model for oligomer synthesis and hence for peptidoglycan cross-linking was observed, both in PBP4+ and PBP4- mutants. The implications for secondary cross-linking in S. aureus cell wall formation are inescapable, although the possibility of an endopeptidase/transpeptidase providing later modification of the peptidoglycan is not completely ruled out.  相似文献   

8.
A plasmid in Streptococcus pneumoniae.   总被引:2,自引:0,他引:2       下载免费PDF全文
Plasmid deoxyribonucleic acid has been detected in three related laboratory strains of Streptococcus pneumoniae. Strains D39S, R36, and R36NC each contain a minimum of two copies per cell of a 2.0-megadalton plasmid (pDP1). A plasmid twice as large as this smaller one is also present in much lower quantity in these strains, but neither plasmid is present in four strains related to these or in a drug-resistant clinical isolate from Paris. The plasmid yield was not amplified in the presence of chloramphenicol. No phenotype has been correlated with the presence of pDP1, which has existed in strains carried for many years in laboratory collections.  相似文献   

9.
Streptococcus pneumoniae produces two class B penicillin-binding proteins, PBP2x and PBP2b, both of which are essential. It is generally assumed that PBP2x is specifically involved in septum formation, while PBP2b is dedicated to peripheral cell wall synthesis. However, little experimental evidence exists to substantiate this belief. In the present study, we obtained evidence that strongly supports the view that PBP2b is essential for peripheral peptidoglycan synthesis. Depletion of PBP2b expression gave rise to long chains of cells in which individual cells were compressed in the direction of the long axis and looked lentil shaped. This morphological change is consistent with a role for pneumococcal PBP2b in the synthesis of the lateral cell wall. Depletion of PBP2x, on the other hand, resulted in lemon-shaped and some elongated cells with a thickened midcell region. Low PBP2b levels gave rise to changes in the peptidoglycan layer that made pneumococci sensitive to exogenously added LytA during logarithmic growth and refractory to chain dispersion upon addition of LytB. Interestingly, analysis of the cell wall composition of PBP2b-depleted pneumococci revealed that they had a larger proportion of branched stem peptides in their peptidoglycan than the corresponding undepleted cells. Furthermore, MurM-deficient mutants, i.e., mutants lacking the ability to synthesize branched muropeptides, were found to require much higher levels of PBP2b to sustain growth than those required by MurM-proficient strains. These findings might help to explain why increased incorporation of branched muropeptides is required for high-level beta-lactam resistance in S. pneumoniae.  相似文献   

10.
The peptidoglycan is a rigid matrix required to resist turgor pressure and to maintain the cellular shape. It is formed by linear glycan chains composed of N‐acetylmuramic acid‐(β‐1,4)‐N‐acetylglucosamine (MurNAc‐GlcNAc) disaccharides associated through cross‐linked peptide stems. The peptidoglycan is continually remodelled by synthetic and hydrolytic enzymes and by chemical modifications, including O‐acetylation of MurNAc residues that occurs in most Gram‐positive and Gram‐negative bacteria. This modification is a powerful strategy developed by pathogens to resist to lysozyme degradation and thus to escape from the host innate immune system but little is known about its physiological function. In this study, we have investigated to what extend peptidoglycan O‐acetylation is involved in cell wall biosynthesis and cell division of Streptococcus pneumoniae. We show that O‐acetylation driven by Adr protects the peptidoglycan of dividing cells from cleavage by the major autolysin LytA and occurs at the septal site. Our results support a function for Adr in the formation of robust and mature MurNAc O‐acetylated peptidoglycan and infer its role in the division of the pneumococcus.  相似文献   

11.
A number of heterologous plasmid deoxyribonucleic acids (DNAs) coding for erythromycin, tylosin, lincomycin, tetracycline, or chloramphenicol resistance have been introduced into Streptococcus pneumoniae via genetic transformation with frequencies that varied between 10(-5) to as high as 5 x 10(-1) per colony-forming unit. Transformation with plasmid DNA required pneumococcal competence, was competed by chromosomal DNA, and showed a saturation at about 0.5 micrograms/ml (with a recipient population of 3 x 10(7) colony-forming units of competent cells per ml). Plasmid transformation did not occur with a recipient strain, 410, defective in endonuclease I activity and in chromosomal genetic transformation. All erythromycin-resistant transformants examined contained covalently closed circular DNA with the same electrophoretic mobility on agarose gels as the donor DNAs, and when examined in detail the plasmid reisolated from the transformants had the same restriction patterns and the same specific transforming activity as the donor DNA. In the cases of two plasmids examined in detail--pAM77 and pSA5700 Lc9--most of the transforming activity was associated with DNA monomers; DNA multimers present in pSA5700 Lc9 also had biological activity. An unexpected finding was the demonstration of transformation (2 x 10(-5) per colony-forming unit) with plasmid DNAs linearized by treatment with S1 nuclease or with restriction endonucleases.  相似文献   

12.
13.
Deoxyribonucleic acid (DNA) in lysates of both completent and noncompetent streptococcus pneumoniae cells was characterized by chromatography on benzoylated, naphthoylated diethylaminoethyl-cellulose columns, by sensitivity to Aspergillus oryzae S1 endonuclease, and by sucrose gradient analysis. The DNAs from both competent and noncompetent cells were found to contain similar extents of single-stranded regions. These single-stranded regions appeared to be intact, unpaired regions in double-stranded DNA rather than gaps, nicks, or unpaired ends in the DNA. Inhibition of cells with rifampin prior to lysis increased the amount of such single strandedness in the DNA. Lysates made at various times after [14C]thymidine-labeled cells had bound [3H]thymidine-labeled transforming DNA were also characterized by benzoylated, naphthoylated diethylaminoethyl-cellulose chromatography. Changes in the elution profiles of DNA from cells exposed to homospecific (S. pneumoniae) donor DNA were indicative of the formation of complexes between donor DNA and the single-stranded regions of recipient DNA. In contrast, profiles of DNA from cells exposed to heterospecific (S. sanguis) DNA did not show significant changes, indicating that few such donor-recipient complexes were formed during heterospecific transformation.  相似文献   

14.
Davie, Joseph M. (Indiana University, Bloomington), and Thomas D. Brock. Effect of teichoic acid on resistance to the membrane-lytic agent of Streptococcus zymogenes. J. Bacteriol. 92:1623-1631. 1966.-The resistance of Streptococcus zymogenes to its own lytic agent has been shown to be due to the production of a specific, inhibitory teichoic acid. A survey of streptococcal strains showed that only strains resistant to the lytic agent produced the specific inhibitor. In addition, the inhibitor can be removed from spheroplasts of resistant strains, thereby making them sensitive to the lysin. Throughout the early part of the growth cycle, the inhibitor is associated with the cell and cannot be found in the medium. During late logarithmic phase, however, the inhibitor is released into the medium by the cells, and therefore is a contributing factor to the apparent lability of the lytic agent. The purified, inhibitory teichoic acid contains ribitol, phosphate, glucose, and d-alanine. The alkaline lability of the biological activity of the teichoic acid was correlated with the hydrolysis of the d-alanine. A streptococcal strain which is sensitive to the membrane-lytic agent produced an inactive ribitol teichoic acid which lacks the ester-linked d-alanine, whereas a lysin-resistant mutant of this strain produces a teichoic acid which contains d-alanine and which has inhibitory activity.  相似文献   

15.
Unsaturated fatty acid (UFA) biosynthesis is essential for the maintenance of membrane structure and function in many groups of anaerobic bacteria. Like Escherichia coli, the human pathogen Streptococcus pneumoniae produces straight-chain saturated fatty acids (SFA) and monounsaturated fatty acids. In E. coli UFA synthesis requires the action of two gene products, the essential isomerase/dehydratase encoded by fabA and an elongation condensing enzyme encoded by fabB. S. pneumoniae lacks both genes and instead employs a single enzyme with only an isomerase function encoded by the fabM gene. In this paper we report the construction and characterization of an S. pneumoniae 708 fabM mutant. This mutant failed to grow in complex medium, and the defect was overcome by addition of UFAs to the growth medium. S. pneumoniae fabM mutants did not produce detectable levels of monounsaturated fatty acids as determined by gas chromatography-mass spectrometry and thin-layer chromatography analysis of the radiolabeled phospholipids. We also demonstrate that a fabM null mutant of the cariogenic organism Streptococcus mutants is a UFA auxotroph, indicating that FabM is the only enzyme involved in the control of membrane fluidity in streptococci. Finally we report that the fabN gene of Enterococcus faecalis, coding for a dehydratase/isomerase, complements the growth of S. pneumoniae fabM mutants. Taken together, these results suggest that FabM is a potential target for chemotherapeutic agents against streptococci and that S. pneumoniae UFA auxotrophs could help identify novel genes encoding enzymes involved in UFA biosynthesis.  相似文献   

16.
The chloramphenicol resistance of Streptococcus haemolyticus, Streptococcus pneumoniae and Streptococcus faecalis isolated from clinical materials was proved to be due to an inactivating enzyme produced by these bacteria. The inactivated products of chloramphenicol were identified as 1-acetoxy, 3-acetoxy and 1,3-diacetoxy derivatives by thin-layer chromatography and infrared spectroscopy. The responsible enzyme was thus confirmed to be chloramphenicol acetyltransferase. The enzyme was inducible. It was partially purified by ammonium sulfate precipitation, DEAE-cellulose chromatography and gel filtration on Sephadex G-150. The enzymes obtained from S. haemolyticus, S. pneumoniae and S. faecalis have been compared with the conclusion that they are identical with respect to molecular weight (approximately 75,000-80,000), optimum pH and heat stability.  相似文献   

17.
Streptococcus oralis ATCC 35037 took up radioactively labeled choline from growth medium. Most of the choline (80 to 90%) was incorporated into the cell wall teichoic acid, and about 10% was localized in the plasma membrane. While cells grew in choline-free medium, they did so at slow rates and produced cell walls with greatly reduced amounts of phosphate and no detectable choline. Cells grown in choline-free medium had grossly abnormal shape and size. Both biochemical and morphological abnormalities were reversible by addition of choline to the medium.  相似文献   

18.
In Streptococcus pneumoniae, heat shock induces the synthesis of 65-, 73-, and 84-kDa proteins, and ethanol shock induces a 104-kDa protein. In this study, the 65-, 84-, and 104-kDa proteins were identified as members of the GroEL, ClpL and alcohol dehydrogenase families, respectively, and the general properties of the stress response of S. pneumoniae to several other stresses were characterized. However, several stresses which are known to induce stress responses in Escherichia coli and Bacillus subtilis failed to induce any high molecular weight heat-shock proteins (HSPs) such as GroEL and DnaK homologues. A minor temperature shift from 30 to 37 C triggered induction of the homologues of DnaK and GroEL of E. coli. These features may provide a foundation for evaluating the role of heat-shock proteins relative to the physiology and pathogenesis of pneumococcus.  相似文献   

19.
Choline-containing teichoic acid seems to be essential for the adsorption of bacteriophage Dp-1 to pneumococci. This conclusion is based on the following observations: In contrast to pneumococci grown in choline-containing medium, cells grown in medium containing ethanolamine or other submethylated aminoalcohols instead of choline were found to be resistant to infection by Dp-1. Live choline-grown bacteria and heat- or UV-inactivated cells and purified cell walls prepared from these cells were capable of adsorbing phage Dp-1; ethanolamine-grown pneumococci or cell wall preparations were unable to do so. Adsorption of Dp-1 to choline-containing cell walls was competitively inhibited by phosphorylcholine and by several choline-containing soluble cell surface components, such as the Forssman antigen and the teichoic acid-glycan complexes formed by autolytic cell wall degradation. Cell walls prepared from pneumococci grown in ethanolamine or phosphorylethanolamine were inactive. Electron microscopic studies with pneumococci that had segments of choline-containing cell wall material amid ethanolamine-containing regions indicated that the Dp-1 phage particles adsorbed exclusively to the choline-containing surface areas. We suggest that the choline residues of the pneumococcal teichoic acid are essential components of the Dp-1 phage receptors in this bacterium.  相似文献   

20.
Deoxyribonucleic acid (DNA) from the covalently closed circular DNA molecules of Pseudomonas phage PM2 was found to enter normally transformable cells of Streptococcus pneumoniae as readily as linear bacterial DNA. In a mutant of S. pneumoniae that lacks a membrane nuclease and is defective in DNA entry, as many molecules of PM2 DNA as of linear DNA were bound on the outside of cells at equivalent DNA concentrations. Bound DNA suffered single-strand breaks, but circular DNA with preexisting breaks was bound no better than closed circles. In the presence of divalent cations, DNA bound to cells of a leaky nuclease mutant showed double-strand breaks. At least the majority of PM2 DNA that entered normal cells was single stranded. These results are consistent with a mechanism for DNA entry in which DNA is first nicked on binding, then a double-strand break is formed by cleavage of the complementary strand, and continued processive action of the membrane nuclease facilitates entry of the originally nicked strand. Although the bulk of circular donor DNA appeared to enter in this way, the results do not exclude entry of a small amount of donor DNA in an intact form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号