首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
 The cooperative effect of anions and proton concentration on the EPR spectroscopic properties of the ferrous nitrosylated derivative of monomeric Mb from loggerhead sea turtle (Caretta caretta), sperm whale (Physeter catodon), and horse (Caballus caballus) has been investigated between pH 4.5 and 9.0, at 100 K. In the absence of anions, an EPR spectrum characteristic of the hexa-coordinated species of ferrous nitrosylated Mb with an axial geometry is observed, which is unaffected by pH. On the other hand, a transition toward a species characterized by an EPR spectrum corresponding to a hexa-coordinated rhombic geometry takes place in the presence of phosphate, acetate, citrate, sulfate, and chloride. Only the hexa-coordinated form characterized by the rhombic EPR spectrum appears then to undergo a pH-dependent transition toward the penta-coordinated species. Present results show clear-cut evidence for the spectroscopic coupling of proton and anion binding sites with the Mb reactive center, indicating that an allosteric mechanism might modulate the proximal HisF8-heme-NO geometry in monomeric hemoproteins. Received: 15 December 1997 / Accepted: 15 June 1998  相似文献   

2.
 Aldehyde:ferredoxin oxidoreductase (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus is a homodimeric protein. Each subunit carries one [4Fe-4S] cubane and a novel tungsten cofactor containing two pterins. A single iron atom bridges between the subunits. AOR has previously been studied with EPR spectroscopy in an inactive form known as the red tungsten protein (RTP): reduced RTP exhibits complex EPR interaction signals. We have now investigated the active enzyme AOR with EPR, and we have found an S = 1/2 plus S = 3/2 spin mixture from a non-interacting [4Fe-4S]1+ cluster in the reduced enzyme. Oxidized AOR affords EPR signals typical for W(V) with g–values of 1.982, 1.953, and 1.885. The W(V) signals disappear at a reduction potential E m,7.5 of +180 mV. This unexpectedly high value indicates that the active-site redox chemistry is based on the pterin part of the cofactor. Received: 18 December 1995 / Accepted: 26 March 1996  相似文献   

3.
 In this study we confirmed the previous observation that the cytoplasmic NAD-linked hydrogenase of Alcaligenes eutrophus H16 is EPR-silent in the oxidized state. We also demonstrated the presence of significant Ni-EPR signals when the enzyme was either reduced with the natural electron carrier NADH (5–10 mM) or carefully titrated with sodium dithionite to an intermediate, narrow redox potential range (–280 to –350 mV). Reduction with NADH under argon atmosphere led to a complex EPR spectrum at 80 K with g values at 2.28, 2.20, 2.14, 2.10, 2.05, 2.01 and 2.00. This spectrum could be differentiated by special light/dark treatments into three distinct signals: (1) the "classical" Ni-C signal with g values at 2.20, 2.14 and 2.01, observed with many hydrogenases in the reduced, active state; (2) the light-induced signal (Ni-L) with g values at 2.28, 2.10 and 2.05 and (3) a flavin radical (FMN semiquinone) signal at g = 2.00. The assignment of the Ni-EPR signal was clearly confirmed by EPR spectra of hydrogenase labeled with 61Ni (nuclear spin I = 3/2) yielding a broadening of the Ni spectra at all g values and a resolved 61Ni hyperfine splitting into four lines of the low field edge in the case of the light-induced Ni-EPR signal. The redox potentials determined at pH 7.0 for the described redox components were: for FMN –170 mV (midpoint potential, Em, for appearance), –200 mV (EPR signal intensity maximum) and –230 mV (Em for disappearance); for the Ni centre (Ni-C), –290 mV (Em for appearance), –305 mV (signal intensity maximum) and –325 mV (Em for disappearance). Exposure of the NADH-reduced hydrogenase to carbon monoxide led to an apparent Ni-CO species indicated by a novel rhombic EPR signal with g values at 2.35, 2.08 and 2.01. Received: 19 July 1995 / Accepted: 10 September 1995  相似文献   

4.
Electron paramagnetic resonance (EPR) spectra and X-ray absorption (EXAFS and XANES) data have been recorded for the manganese enzyme aminopeptidase P (AMPP, PepP protein) from Escherichia coli. The biological function of the protein, a tetramer of 50-kDa subunits, is the hydrolysis of N-terminal Xaa-Pro peptide bonds. Activity assays confirm that the enzyme is activated by treatment with Mn2+. The EPR spectrum of Mn2+–activated AMPP at liquid-He temperature is characteristic of an exchange-coupled dinuclear Mn(II) site, the Mn-Mn separation calculated from the zero-field splitting D of the quintet state being 3.5?(±0.1)?Å. In the X-ray absorption spectrum of Mn2+–activated AMPP at the Mn K edge, the near-edge features are consistent with octahedrally coordinated Mn atoms in oxidation state +2. EXAFS data, limited to k≤12?Å–1 by traces of Fe in the protein, are consistent with a single coordination shell occupied predominantly by O donor atoms at an average Mn-ligand distance of 2.15?Å, but the possibility of a mixture of O and N donor atoms is not excluded. The Mn-Mn interaction at 3.5?Å is not detected in the EXAFS, probably due to destructive interference from light outer-shell atoms. The biological function, amino acid sequence and metal-ion dependence of E. coli AMPP are closely related to those of human prolidase, an enzyme that specifically cleaves Xaa-Pro dipeptides. Mutations that lead to human prolidase deficiency and clinical symptoms have been identified. Several known inhibitors of prolidase also inhibit AMPP. When these inhibitors are added to Mn2+–activated AMPP, the EPR spectrum and EXAFS remain unchanged. It can be inferred that the inhibitors either do not bind directly to the Mn centres, or substitute for existing Mn ligands without a significant change in donor atoms or coordination geometry. The conclusions from the spectroscopic measurements on AMPP have been verified by, and complement, a recent crystal structure analysis.  相似文献   

5.
 The di-haem cytochrome c peroxidase of Paracoccus denitrificans is a calcium binding dimer of 37.5 kDa subunits. It is responsible for reduction of H2O2 to H2O with oxidation of cytochrome c 550 and is isolated in a fully oxidised state (inactive) in which one haem (centre I) is in a high-spin/low-spin equilibrium and high potential and the other (centre II) is low-spin and low potential. The enzyme undergoes direct electron transfer (without the need for mediators) with a 4,4′-dithiodipyridine-modified gold electrode and the response of both haem groups can be observed. By combination of the cyclic and pulse voltammetric data with the established spectroscopic information, it was demonstrated that entry of one electron to the high potential haem leads (in a mechanism involving strong haem-haem interactions) to a complex change of spin states and redox potentials of both haems in order to attain a "ready state" for binding, reduction and cleavage of the hydrogen peroxide. In the absence of endogenous calcium, haem communication can be completely disconnected and is recovered only when Ca2+ is added, an essential step for the formation of the peroxidatic site. The intricate electrochemical behaviour of this enzyme was interpreted as a mechanism involving, both reduction and oxidation of the high potential haem, an interfacial electron transfer coupled to a homogenous chemical reaction (EC mechanism). We discuss two different models for the sequence of events leading to the appearance of the active pentacoordinated peroxidatic haem. Received: 29 April 1998 / Accepted: 3 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号