首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During 2,3,5,6-tetramethylpyrazine production from glucose by Bacillus strains, a novel product was detected and identified as 2,4,5-trimethylimidazole (TMI) by GC/MS. TMI appeared in the culture medium only after glucose had been depleted and then increased to 0.25–0.31 g l−1 in 90–120 h. When the ammonium source was changed from (NH4)2SO4 to (NH4)2HPO4, only about one tenth of TMI was detected. Although the mechanistic events largely remain unclear, both microbial strains tested demonstrated similar dynamic processes of TMI production, suggesting that TMI formation is a genuine feature of Bacillus species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Although resistance of microorganisms to Hg(II) salts has been widely investigated and resistant strains have been reported from many eubacterial genera, there are few reports of mercuric ion resistance in extremophilic microorganisms. Moderately thermophilic mercury resistant bacteria were selected by growth at 62 °C on Luria agar containing HgCl2. Sequence analysis of 16S rRNA genes of two isolates showed the closest matches to be with Bacillus pallidus and Ureibacillus thermosphaericus. Minimum inhibitory concentration (MIC) values for HgCl2 were 80 μg/ml and 30 μg/ml for these isolates, respectively, compared to 10 μg/ml for B. pallidus H12 DSM3670, a mercury-sensitive control. The best-characterised mercury-resistant Bacillus strain, B. cereus RC607, had an MIC of 60 μg/ml. The new isolates had negligible mercuric reductase activity but removed Hg from the medium by the formation of a black precipitate, identified as HgS by X-ray powder diffraction analysis. No volatile H2S was detected in the headspace of cultures in the absence or presence of Hg2+, and it is suggested that a new mechanism of Hg tolerance, based on the production of non-volatile thiol species, may have potential for decontamination of solutions containing Hg2+ without production of toxic volatile H2S.  相似文献   

4.
Gram-positive bacteria, notably Bacillus and Streptomyces, have been used extensively in industry. However, these microorganisms have not yet been exploited for the production of the biodegradable polymers, polyhydroxyalkanoates (PHAs). Although PHAs have many potential applications, the cost of production means that medical applications are currently the main area of use. Gram-negative bacteria, currently the only commercial source of PHAs, have lipopolysaccharides (LPS) which co-purify with the PHAs and cause immunogenic reactions. On the other hand, Gram- positive bacteria lack LPS, a positive feature which justifies intensive investigation into their production of PHAs. This review summarizes currently available knowledge on PHA production by Gram- positive bacteria especially Bacillus and Streptomyces. We hope that this will form the basis of further research into developing either or both as a source of PHAs for medical applications.  相似文献   

5.
Growth of alkaliphilic Bacillus halodurans C-125 both on agar plates and in liquid culture was inhibited by methyl-β-cyclodextrin (CD). Furthermore, resting cells of the strain were lysed by contact with methyl-β-CD higher than 10 mM. α-CD also showed lysis activity against Bacillus and related strains. The activity was not observed with Gram-negative and Gram-positive bacteria except for Bacillus strains. Fluorescence staining and scanning electron microscopy of cells revealed that methyl-β-CD disrupted cell membranes, and consequently, the cells were lysed. This is a novel physiological property of CDs.  相似文献   

6.
Sixteen aerobic endospore-forming Bacillus spp. were isolated from fully fermented tea leaf samples from 10 tea factories in Lahijan and Langrod cities (Gillan province, Iran). Bacillus spp. isolates were characterized using phenotypic characteristics, antibiotic susceptibility and cellular fatty acid (CFA) patterns. Based on the data obtained, five isolates of tea Bacillus spp. (TB): TB2, TB4, TB6, TB10 and TB12 belonged to the species B. subtilis. Two isolates, TB1 and TB14 were recognized as B. licheniformis. Two Bacillus spp. isolates, TB9 and TB 16 were identified as B. sphaericus. Two isolates, TB5 and TB13 were shown to be B. pumilus. Two isolates, TB7 and TB15 belonged to B. cereus. Amongst the isolates, Bacillus sp. TB3, Bacillus sp. TB8 and Bacillus sp. TB11 showed different phenotypic traits, distinct antibiotic sensitivity and fatty acid profiles, and they may represent novel species. The isolates showed polyphenol oxidase (tyrosinase) and peroxidase activities. The highest polyphenol oxidase and peroxidase activities were observed for Bacillus sp. TB3 and B. licheniformis TB14, respectively, where values of 5.48 and 3.73 units mL−1 were observed.  相似文献   

7.
Thirty-five strains capable of secreting extracellular alkaline proteases were isolated from the soil and waste water near the milk processing plant, slaughterhouse. Strain APP1 with the highest-yield alkaline proteases was identified as Bacillus sp. The cultural conditions were optimized for maximum enzyme production. When the initial pH of the medium was 9.0, the culture maintained maximum proteolytic activity for 2,560 U ml−1 at 50°C for 48 h under the optimized conditions containing (g−1): soyabean meal, 15; wheat flour, 30; K2HPO4, 4; Na2HPO4, 1; MgSO4·7H2O, 0.1; Na2CO3, 6. The alkaline protease showed extreme stability toward SDS and oxidizing agents, which retained its activity above 73 and 110% on treatment for 72 h with 5% SDS and 5% H2O2, respectively.  相似文献   

8.
The toxigenic potential of Bacillus species isolated from the traditional fermented condiment okpehe was determined; this is aimed at selection of non-toxigenic bacilli as starter cultures to bring about production of safe product. B. subtilis and B. cereus strains isolated from okpehe were evaluated for their possible possession of virulence characteristics. Fifty isolates were screened for their ability to produce diarrhoea enterotoxin by reversed passive latex agglutination (BCET-RPLA) test kit; the result showed that 40% of the B. cereus strains were toxigenic. The ability of the selected isolates to compete in situ and in vitro toxin production during the fermentation was also determined. The enterotoxin was not detected using BCET-RPLA kit in the spontaneously fermented samples of okpehe, but the toxin was detected in the okpehe samples fermented using B. cereus enterotoxin producer in mixed starter culture fermentation. The PCR amplification of virulence genes revealed that Bacillus cereus and B. licheniformis, a strain from the B. subtilis group, contained DNA sequences encoding the haemolysin BL (hblD) enterotoxin complex. The growth ability of B. cereus strains to high population during the fermentation and the presence of detectable diarroheagenic genes in B. cereus and B. licheniformis showed that strains carrying virulence characteristics cannot be totally ruled out in traditionally fermented okpehe.  相似文献   

9.
The gene encoding for B. intermedius glutamyl endopeptidase (gseBi) has previously been cloned and its nucleotide sequence analyzed. In this study, the expression of this gene was explored in protease-deficient strain B. subtilis AJ73 during stationary phase of bacterial growth. We found that catabolite repression usually involved in control of endopeptidase expression during vegetative growth was not efficient at the late stationary phase. Testing of B. intermedius glutamyl endopeptidase gene expression with B. subtilis spo0-mutants revealed slight effect of these mutations on endopeptidase expression. Activity of glutamyl endopeptidase was partly left in B. subtilis ger-mutants. Probably, gseBi expression was not connected with sporulation. This enzyme might be involved in outgrowth of the spore, when germinating endospore converts into the vegetative cell. These data suggest complex regulation of B. intermedius glutamyl endopeptidase gene expression with contribution of several regulatory systems and demonstrate changes in control of enzyme biosynthesis at different stages of growth.  相似文献   

10.
In industry, fosfomycin is mainly prepared via chemical epoxidation of cis-propenylphosphonic acid (cPPA). The conversion yield of fosfomycin is less than 50% in the whole process and a large quantity of waste is produced. Biotransformation by microorganisms is an alternative method of preparation. This kind of conversion is more delicate, environmentally friendly, and the conversion yield of fosfomycin would be higher. In this work, an aerobic bacterium capable of transforming cPPA to fosfomycin was isolated. The organism, designated as strain S101, was identified as Bacillus simplex by morphological and physiological characteristics as well as by analysis of the gene encoding the 16S rRNA. Fosfomycin was assayed by two means, bioassay and gas chromatography (GC). Glycerol was a good carbon source for growth and cPPA conversion of strain S101. When cPPA was used as the sole carbon source, neither growth nor conversion to fosfomycin occurred. The optimum cPPA concentration in the conversion medium was 2,000 μg ml−1. After 6 days of incubation, the concentration of fosfomycin reached its maximum level (1,838.2 μg ml−1), with a conversion ratio of 81.3%. Air was indispensable for the growth but not for the conversion to fosfomycin. Furthermore, vanadium ions were found to be essential for the conversion. High concentrations of cPPA had fewer inhibitory effects on the growth of strain S101.  相似文献   

11.
12.
The interaction between Shigella dysenteriae or Shigella sonnei and Acanthamoeba castellanii was studied by viable counts, gentamicin assay and electron microscopy. The result showed that Shigella dysenteriae or Shigella sonnei grew and survived in the presence of amoebae for more than 3 weeks. Gentamicin assay showed that the Shigella were viable inside the Acanthamoeba castellanii which was confirmed by electron microscopy that showed the Shigella localized in the cytoplasm of the Acanthamoeba castellanii. In conclusion, the relationship between Shigella dysenteriae and Shigella sonnei with Acanthamoeba castellanii is symbiotic, and accordingly free-living amoebae may serve as a transmission reservoir for Shigella in water.  相似文献   

13.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

14.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

15.
As part of our effort at establishing microbial consortia of relevance for the bioremediation of xenobiotics polluted environments in Mexico, we assessed the aerobic biodegradation of 2,4-dichlorophenol (2,4-DCP) by a consortium of four Bacillus species that were isolated from a polluted soil by enrichment using a mixture of chlorophenols. The bacterial consortium effectively biodegraded 2-chlorophenol, 3-chlorophenol and 2,4-dichlorophenol at degradation rates of between 1.7 and 6.7 μmoles l−1 h−1. In the presence of NH4Cl or KNO2 as nitrogen sources, 2,4-DCP was variously degraded. Under both conditions, cell biomass attained highest values of 350 and 450 mg l−1 respectively, while the amounts of 2,4-DCP metabolized in 21 days reached peak values of 2.1 and 2.5 mM representing between 70 and 85% degradation respectively. Chloride releases during the same period were highest at 4.7 mM and 5.3 mM in the presence of the two nitrogen sources. The presence of free-chloride in the culture medium had a significant impact on the catabolism of 2,4-dichlorophenol.  相似文献   

16.
This study examines the interactions that occur between Saccharomyces cerevisiae and Oenococcus oeni strains during the process of winemaking. Various yeast/bacteria pairs were studied by applying a sequential fermentation strategy which simulated the natural winemaking process. First, four yeast strains were tested in the presence of one bacterial strain leading to the inhibition of the bacterial component. The extent of inhibition varied widely from one pair to another and closely depended on the specific yeast strain chosen. Inhibition was correlated to weak bacterial growth rather than a reduction in the bacterial malolactic activity. Three of the four yeast strains were then grown with another bacteria strain. Contrary to the first results, this led to the bacterial stimulation, thus highlighting the importance of the bacteria strain. The biochemical profile of the four yeast fermented media exhibited slight variations in ethanol, SO(2) and fatty acids produced as well as assimilable consumed nitrogen. These parameters were not the only factors responsible for the malolactic fermentation inhibition observed with the first bacteria strain. The stimulation of the second has not been reported before in such conditions and remains unexplained.  相似文献   

17.
18.
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule, the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and secondary inflorescence.  相似文献   

19.
Biodegradation and hydrophobicity of Pseudomonas spp. and Bacillus spp. strains were tested at different concentrations of the biosurfactant Quillaya saponin. A model mixture of hydrocarbon (dodecane and hexadecane) was used for estimating the influence of surfactants on biodegradation. The bacterial adhesion to hydrocarbon method for determination of bacterial cell surface hydrophobicity was exploited. Among the tested bacterial strains the higher hydrophobicity was noticed for Pseudomonas aeruginosa TK. The hydrophobicity of this strain was 84%. The highest hydrocarbon biodegradation was observed for P. aeruginosa TK (49%) and Bacillus subtilis (35%) strains after 7 days of experiments. Generally the addition of Quillaya saponin increased hydrocarbon biodegradation remarkably. The optimal concentration proved to be 80 mg l−1. The degree of hydrocarbon biodegradation was 75% for P. aeruginosa TK after the addition of saponin. However the most significant increase in biodegradation after addition of Quillaya saponin was in the case of P. aeruginosa 25 and Pseudomonas putida (the increase of biodegradation from 21 to 52% and from 31 to 66%, respectively). It is worth mentioning that decrease of hydrophobicity is correlated with the best biodegradation by P. aeruginosa strain. For the remaining strains, no significant hydrophobicity changes in relation to the system without surfactant were noticed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号