首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gamma delta T cell receptor (TCR) of the hybridoma KN6 recognizes the self molecule encoded by a class I gene which maps within the TL region of the major histocompatibility complex (MHC) of H-2b mice. Mice transgenic (Tg) for this TCR were crossed with mice genetically deficient in beta 2-microglobulin (beta 2m). No mature Tg gamma delta T cells were detected in the thymus or the spleen of the beta 2m- gamma delta Tg mice. We conclude that interaction between the Tg gamma delta TCR and a beta 2m-associated molecule (probably an MHC class I molecule) is required for the generation of mature Tg gamma delta T cells.  相似文献   

2.
3.
G K Sim  A Augustin 《Cell》1990,61(3):397-405
In BALB/c lung and lymph node gamma delta T cells, a large fraction of the expressed V delta 5 genes consist of an invariant sequence, BID (for BALB/c invariant delta). BID results from a direct joining of the V delta 5, D delta 2, and J delta 1 segments, which conserve their complete germline coding sequences. In C57BL/6 (H-2b) mice, where identical and functional segments are present in the germline, BID is absent. It appears that BID+ gamma delta T cells are positively selected by factors encoded outside of the classical MHC region, as indicated by their dominance in F1(C57BL/6 x BALB/c) and in BALB.B (H-2b) mice. Additional observations, including the expression of BID in BALB/c nu/nu but not in C57BL/6 nu/nu mice, suggest that the expansion of BID+ T cells essentially occurs extrathymically.  相似文献   

4.
Random heterocopolymers of glutamic acid and tyrosine (pEY) evoke strong, genetically controlled immune responses in certain mouse strains. We found that pE50Y50 also stimulated polyclonal proliferation of normal gamma delta, but not alpha beta, T cells. Proliferation of gamma delta T cells did not require prior immunization with this Ag nor the presence of alpha beta T cells, but was enhanced by IL-2. The gamma delta T cell response proceeded in the absence of accessory cells, MHC class II, beta 2-microglobulin, or TAP-1, suggesting that Ag presentation by MHC class I/II molecules and peptide processing are not required. Among normal splenocytes, as with gamma delta T cell hybridomas, the response was strongest with V gamma 1+ gamma delta T cells, and in comparison with related polypeptides, pE50Y50 provided the strongest stimulus for these cells. TCR gene transfer into a TCR-deficient alpha beta T cell showed that besides the TCR, no other components unique to gamma delta T cells are needed. Furthermore, interactions between only the T cells and pE50Y50 were sufficient to bring about the response. Thus, pE50Y50 elicited a response distinct from those of T cells to processed/presented peptides or superantigens, consistent with a mechanism of Ig-like ligand recognition of gamma delta T cells. Direct stimulation by ligands resembling pE50Y50 may thus selectively evoke contributions of gamma delta T cells to the host response.  相似文献   

5.
6.
Intraepithelial T lymphocytes (IEL) are dispersed throughout the intestinal epithelial lining but their role in cellular immune defense is unknown. Their location suggests that their highly activated state may be due to constant exposure to bacterial Ag. To study IEL specificity and function we have prepared a panel of IEL-T cell hybridomas from both adult and weanling C57B1/6 mice. Many of these expressed TCR-gamma delta, a cell type rare in peripheral lymph nodes and spleen but predominant at epithelial surfaces. We have identified a subset of gamma delta T cells from weanling mice which is self reactive, i.e., these hybrids secrete IL-2 spontaneously, without antigenic stimulation or a requirement for APC. Self-reactive TCR-gamma delta+ hybrids and lines, all of which bear a particular TCR (V gamma 1.1C gamma 4V delta 6), have previously been derived from neonatal thymus and the skin. Northern blot and immunoprecipitation analyses suggest that the self-reactive IEL hybrids also bear a C gamma 4/V delta 6 TCR. Antibody inhibition experiments showed that the self-reactivity of the IEL hybrids is TCR mediated. Spontaneous IL-2 production was blocked by soluble anti-CD3 and anti-TCR-gamma delta antibodies but not by antibodies to the TCR-alpha beta. The self-reactive IEL hybrids lack class II MHC and the class I-like proteins CD1 and TLA but express class I MHC. IEL hybrids may also require the vitronectin receptor as an accessory molecule for their activation because spontaneous IL-2 production is blocked by antibody to the vitronectin receptor as well as by the extracellular matrix protein active site peptide RGDS, but not the control peptide RGES. V gamma 1.1C gamma 4V delta 6 T cells in the thymus, skin, and intestine may represent a small and unique subpopulation of lymphocytes with a potential for autoimmune reactivity at peripheral sites.  相似文献   

7.
We have isolated a class I gene from the TL region of the A/J mouse. The gene, T2A, is a homologue of the C57BL/10 mouse gene T2. In the process of mapping this gene we screened a number of BALB/c class I cosmid clusters with a T2A flanking probe. Several of the hybridizing clusters were found to contain identical DNA segments and could therefore be linked together into one single BALB/c TL region which appears to be identical to the TL region of the C57BL/10 mouse. However, two of the hybridizing clusters do not overlap with the C57BL/10 TL region. It appears that these two clusters represent a partial duplication of the TL region in the BALB/c mouse.  相似文献   

8.
The evolution of vertebrate antigen receptors: a phylogenetic approach   总被引:4,自引:0,他引:4  
Classical T cells, those with alpha beta T-cell receptors (TCRs), are an important component of the dominant paradigm for self-nonself immune recognition in vertebrates. alpha beta T cells recognize foreign peptide antigens when they are bound to MHC molecules on the surfaces of antigen-presenting cells. gamma delta T cells bear a similar receptor, and it is often assumed that these T cells also require specialized antigen-presenting molecules for immune recognition, which we term "indirect antigen recognition." B-cell receptors, or immunoglobulins, bind directly to antigens without the help of a specialized antigen-presenting molecule. Phylogenetically, it has been assumed that T-cell receptors and the genes that encode them are a monophyletic group, and that "indirect" antigen recognition evolved before the split into two types of TCR. Recently, however, it has been proposed that gamma delta-TCRs bind directly to antigens, as do immunoglobulins (Ig's). This calls into question the null hypothesis that indirect antigen recognition is a common characteristic of TCRs and, by extension, the hypothesis that all TCR gene sequences form a monophyletic group. To determine whether alternative explanations for antigen recognition and other historical relationships among TCR genes might be possible, we performed phylogenetic analyses on amino acid sequences of the constant and variable regions which encode the basic subunits of TCR and Ig molecules. We used both maximum-parsimony and genetic distance-based methods and could find no strong support for the hypothesis of TCR monophyly. Analyses of the constant region suggest that TCR gamma or delta sequences are the most ancient, implying that the ancestral immune cell was like a modern gamma delta T cell. From this gamma delta-like ancestor arose alpha beta T cells and B cells, implying that indirect antigen recognition is indeed a derived property of alpha beta-TCRs. Analyses of the variable regions are complicated by strong selection on antigen-binding sequences, but imply that direct antigen binding is the ancestral condition.  相似文献   

9.
10.
Neither function nor Ag recognition properties of gamma delta T cells are well understood yet. A TCR gamma-chain family, characterized by distinct N region sequences that converge in coding for a "GxYS" VJ junctional sequence, appears late in ontogeny among highly diversified V gamma 4J gamma 1C gamma 1 chains of C57BL/6 and BALB/c mice. The glycine and serine codons are of germline V gamma 4 and J gamma 1 origin, respectively, whereas the N region consists of a variable amino acid residue x, followed by an invariant tyrosine Y. The high expression of V gamma 4 xYJ gamma 1C gamma 1 in the lung of BALB/c mice compared to that of C57BL/6 is apparently due to a novel pattern of strain-dependent positive selection which, unlike for alpha beta TCR, operates extrathymically. This type of selection seems to be determined by strain specific polymorphic ligands encoded outside of the classical H-2 region.  相似文献   

11.
Previous staining studies with TCR V alpha 11-specific mAbs showed that V alpha 11.1/11.2 (AV11S1 and S2) expression was selectively favored in the CD4+ peripheral T cell population. As this phenomenon was essentially independent of the MHC haplotype, it was suggested that AV11S1 and S2 TCRs exert a preference for recognition of class II MHC molecules. The V alpha segment of the TCR alpha-chain is suggested to have a primary role in shaping the T cell repertoire due to selection for class I or II molecules acting through the complementarity determining regions (CDR) 1 alpha and CDR2 alpha residues. We have analyzed the repertoire of V alpha 11 family members expressed in C57BL/6 mice and have identified a new member of this family; AV11S8. We show that, whereas AV11S1 and S2 are more frequent in CD4+ cells, AV11S3 and S8 are more frequent in CD8+ cells. The sequences in the CDR1 alpha and CDR2 alpha correlate with differential expression in CD4+ or CD8+ cells, a phenomenon that is also observed in BALB/c mice. With no apparent restriction in TCR J alpha usage or CDR3 alpha length in C57BL/6, these findings support the idea of V alpha-dependent T cell repertoire selection through preferential recognition of MHC class I or class II molecules.  相似文献   

12.
B, alpha beta T, and NK lymphocytes establish immunological synapses (IS) with their targets to enable recognition. Transfer of target cell-derived Ags together with proximal molecules onto the effector cell appears also to occur through synapses. Little is known about the molecular basis of this transfer, but it is assumed to result from Ag receptor internalization. Because human gamma delta T cells recognize soluble nonpeptidic phosphoantigens as well as tumor cells such as Daudi, it is unknown whether they establish IS with, and extract molecules from, target cells. Using flow cytometry and confocal microscopy, we show in this work that Ag-stimulated human V gamma 9/V delta 2 T cells conjugate to, and perform molecular transfer from, various tumor cell targets. The molecular transfer appears to be linked to IS establishment, evolves in a dose-dependent manner in the presence of either soluble or cellular Ag, and requires gamma delta TCR ligation, Src family kinase signaling, and participation of the actin cytoskeleton. Although CD45 exclusion characterized the IS performed by gamma delta T cells, no obvious capping of the gamma delta TCR was detected. The synaptic transfer mediated by gamma delta T cells involved target molecules unrelated to the cognate Ag and occurred independently of MHC class I expression by target cells. From these observations, we conclude that despite the particular features of gamma delta T cell activation, both synapse formation and molecular transfer of determinants belonging to target cell characterize gamma delta T cell recognition of Ags.  相似文献   

13.
Thy-1+ dendritic epidermal cells (Thy-1+DEC) are present in the murine epidermis. They are morphologically dendritic and express Thy-1, CD3 and asialoGM1, but not CD4 or CD8. T cell receptor (TCR) of Thy-1+DEC is TCR gamma delta. Allison et al and Tonegawa et al recently found that TCR of Thy-1+DEC is V gamma 5 J gamma C gamma -V delta 1D2J2C delta and has no junctional diversity. This TCR gamma delta of Thy-1+DEC is identical to TCR expressed on the earliest fetal thymocytes. It is distinct from that of other epithelial associated lymphocytes or other thymocytes. The ligand of Thy-1+DEC is not known, although TCR gamma delta of adult type could recognize allogenic major histocompatibility complex(MHC) class I or class II and mycobacterium antigen, especially heat shock protein. The TCR of Thy-1+DEC may not be the homing receptor to epidermis. The further studies are needed to elucidate the ligands or functions of Thy-1+DEC.  相似文献   

14.
By varying growth conditions, we identified a novel mechanism of autocrine regulation of major histocompatibility complex (MHC) class I gene expression by induction of beta interferon gene expression in transformed BALB/c-3T3 cells. Low-serum conditions enhanced MHC class I antigen expression in v-rasKi- and v-mos-transformed BALB/c-3T3 cells but not in untransformed BALB/c-3T3 cells. Transformed and untransformed cells grown under standard serum conditions (10% bovine calf serum) expressed similar cell surface levels of MHC class I antigens. However, low-serum conditions (0.5% bovine calf serum) induced four- to ninefold increases in cell surface levels of MHC class I antigens in both v-rasKi- and v-mos-transformed cells but not in untransformed cells. These increases in MHC class I gene expression were seen at both the mRNA and cell surface protein levels and involved not only the heavy-chain component of the class I antigens but also beta 2 microglobulin. Beta 1 interferon mRNA and beta interferon-inducible 2',5'-oligoadenylate synthetase mRNA were induced by growth under low-serum conditions in transformed BALB/c-3T3 cells, and antibodies to beta interferon blocked the induction of MHC class I antigen expression by serum deprivation in these cells. These results demonstrate that growth under low-serum conditions leads to induction of beta interferon expression in oncogene-transformed cells which then directly mediates autocrine enhancement of MHC class I gene expression.  相似文献   

15.
Induction of central deletional T cell tolerance by gene therapy   总被引:4,自引:0,他引:4  
Transgenic mice expressing an alloreactive TCR specific for the MHC class I Ag K(b) were used to examine the mechanism by which genetic engineering of bone marrow induces T cell tolerance. Reconstitution of lethally irradiated mice with bone marrow infected with retroviruses carrying the MHC class I gene H-2K(b) resulted in lifelong expression of K(b) on bone marrow-derived cells. While CD8 T cells expressing the transgenic TCR developed in control mice reconstituted with mock-transduced bone marrow, CD8 T cells expressing the transgenic TCR failed to develop in mice reconstituted with H-2K(b) transduced bone marrow. Analysis of transgene-expressing CD8 T cells in the thymus and periphery of reconstituted mice revealed that CD8 T cells expressing the transgenic TCR underwent negative selection in the thymus of mice reconstituted with K(b) transduced bone marrow. Negative selection induced by gene therapy resulted in tolerance to K(b). Thus, genetic engineering of bone marrow can be used to alter T cell education in the thymus by inducing negative selection.  相似文献   

16.
Human gamma delta T cells with the TCR variable region V(delta)1 occur mainly in epithelia and respond to stress-induced expression of the MHC class I-related chains A and B, which have no function in Ag presentation. MIC function as ligands for NKG2D-DAP10, an activating receptor complex that triggers NK cells, costimulates CD8 alpha beta and V(gamma)9V(delta)2 gamma delta T cells, and is required for stimulation of V(delta)1 gamma delta T cells. It is unresolved, however, whether triggering of V(delta)1 gamma delta TCRs is also mediated by MIC or by unidentified cell surface components. Soluble MICA tetramers were used as a binding reagent to demonstrate specific interactions with various V(delta)1 gamma delta TCRs expressed on transfectants of a T cell line selected for lack of NKG2D. Tetramer binding was restricted to TCRs derived from responder T cell clones classified as reactive against a broad range of MIC-expressing target cells and was abrogated when TCRs were composed of mismatched gamma- and delta-chains. These results and the inability of V(delta)1 gamma delta T cells to respond to target cells expressing the ULBP/N2DL ligands of NKG2D, which are highly divergent from MIC, indicate that MIC delivers both the TCR-dependent signal 1 and the NKG2D-dependent costimulatory signal 2. This dual function may serve to prevent erroneous gamma delta T cell activation by cross-reactive cell surface determinants.  相似文献   

17.
The class I Ag encoded in the Qa/T1a regions of the murine MHC are much less polymorphic, and usually have a more restricted tissue distribution than the classical histocompatibility class I Ag, encoded by genes located in the H-2K, D, and L loci. The isolation of a quasi-ubiquitously expressed, poorly polymorphic class I gene of the T1a region of the H-2d mouse MHC, namely gene 37 (or T18d), has been recently reported. We describe the nucleotide sequence of a closely related gene, T10c gene, the counterpart of the gene 37 in the large duplicated parts of T1a region of the BALB/c (H-2d) MHC. The T10c gene structure and sequence are very similar to those of gene 37, but T10c gene is most likely a pseudogene. In A/J mouse strain, there appears to be a single gene related to 37, which is also found expressed in a variety of tissues. We show that this gene is likely to be a chimeric one derived from T10c for its 3' part, and from a gene closely related to gene 37 for its 5' part, which potentially encodes for an unusual class I molecule composed of the first two domains. Finally, Southern blot analysis of a number of wild mice and related animals suggests that a gene closely related to the present T10c gene may be the ancestor of this subfamily of class I genes characterized by the presence of an unusual second domain.  相似文献   

18.
The development of TCR alphabeta(+), CD8alphabeta(+) intestinal intraepithelial lymphocytes (IEL) is dependent on MHC class I molecules expressed in the thymus, while some CD8alphaalpha(+) IEL may arise independently of MHC class I. We examined the influence of MHC I allele dosage on the development CD8(+) T cells in RAG 2(-/-) mice expressing the H-2D(b)-restricted transgenic TCR specific for the male, Smcy-derived H-Y Ag (H-Y TCR). IEL in male mice heterozygous for the restricting (H-2D(b)) and nonrestricting (H-2D(d)) MHC class I alleles (MHC F(1)) were composed of a mixture of CD8alphabeta(+) and CD8alphaalpha(+) T cells, while T cells in the spleen were mostly CD8alphabeta(+). This was unlike IEL in male mice homozygous for H-2D(b), which had predominantly CD8alphaalpha(+) IEL and few mostly CD8(-) T cells in the spleen. Our results demonstrate that deletion of CD8alphabeta(+) cells in H-Y TCR male mice is dependent on two copies of H-2D(b), whereas the generation of CD8alphaalpha(+) IEL requires only one copy. The existence of CD8alphabeta(+) and CD8alphaalpha(+) IEL in MHC F(1) mice suggests that their generation is not mutually exclusive in cells with identical TCR. Furthermore, our data imply that the level of the restricting MHC class I allele determines a threshold for conventional CD8alphabeta(+) T cell selection in the thymus of H-Y TCR-transgenic mice, whereas the development of CD8alphaalpha(+) IEL is dependent on, but less sensitive to, this MHC class I allele.  相似文献   

19.
Bcl-2 plays a critical role in regulating cell survival and apoptosis. We examined Bcl-2 expression in virus-specific CD8 T cells during the expansion, death, and memory phases of the T cell response following infection of mice with lymphocytic choriomeningitis virus (LCMV). Naive CD8 T cells expressed a basal level of Bcl-2 that was down-regulated in effector CD8 T cells just before the death phase. Bcl-2 levels remained low during the death phase but surviving memory CD8 T cells expressed higher levels of Bcl-2 than naive cells. These changes were shown to occur in LCMV TCR transgenic cells as well as virus-specific CD8 T cells in C57BL/6 and BALB/c mice identified by MHC class I tetramers. In all instances, memory CD8 T cells expressed higher levels of Bcl-2, suggesting that increased Bcl-2 expression plays a role in the long-term maintenance of memory CD8 T cells in vivo.  相似文献   

20.
We analyzed the phosphorylation and the dynamics of TCR/CD3, CD8 and MHC class I molecules during the activation of a CD8+ cytotoxic T lymphocyte clone and of CD8- T helper hybridomas transfected with the gene coding for the native (J. Gabert, C. Langlet, R. Zamoyska, J.R. Parnes, A.M. Schmitt-Verhulst, and B. Malissen. 1987. Reconstitution of MHC class I specificity by transfer of the T cell receptor and Lyt-2 genes. Cell 50:545) or truncated CD8 alpha molecule. The CD3 components gamma and epsilon and the CD8 alpha subunit were phosphorylated after activation of the CTL clone with the protein kinase C activator PMA. Class I MHC molecules were phosphorylated irrespective of PMA activation. Constitutive phosphorylation of the MHC class I products was found to be intrinsic to the transmembrane/cytoplasmic portion of the molecules because it was transferred to the CD8 alpha hybrid molecules composed of extracellular CD8 and MHC class I transmembrane and intracytoplasmic domains (CD8-e/MHC-t-i). Measurements of the dynamics of these cell surface molecules by using radiolabeled mAb revealed distinct behaviors: TCR/CD3 complex ligand internalization was increased (around 50% after 40 to 60 min) after PMA activation, whereas the ligand of class I MHC molecules was internalized at constant rate irrespective of PMA activation. Ligand bound to native CD8 molecules was poorly internalized, irrespective of the activation of the T cells with PMA. The same ligand bound to the CD8-e/MHC-t-i hybrid molecule was internalized at the same rate as a class I MHC molecule ligand, indicating that the behavior of the hybrid molecule was characteristic of the transmembrane/cytoplasmic portion of MHC class I molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号