首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Anamika  Srinivasan N  Krupa A 《Proteins》2005,58(1):180-189
Protein kinases are central to regulation of cellular signaling in the eukaryotes. Well-conserved and lineage-specific protein kinases have previously been identified from various completely sequenced genomes of eukaryotes. The current work describes a genome-wide analysis for protein kinases encoded in the Plasmodium falciparum genome. Using a few different profile matching methods, we have identified 99 protein kinases or related proteins in the parasite genome. We have classified these kinases into subfamilies and analyzed them in the context of noncatalytic domains that occur in these catalytic kinase domain-containing proteins. Compared to most eukaryotic protein kinases, these sequences vary significantly in terms of their lengths, inserts in catalytic domains, and co-occurring domains. Catalytic and noncatalytic domains contain long stretches of repeats of positively charged and other polar amino acids. Various components of the cell cycle, including 4 cyclin-dependent kinase (CDK) homologues, 2 cyclins, 1 CDK regulatory subunit, and 1 kinase-associated phosphatase, are identified. Identification of putative mitogen-activated protein (MAP) Kinase and MAP Kinase Kinase of P. falciparum suggests a new paradigm in the highly conserved signaling pathway of eukaryotes. The calcium-dependent kinase family, well represented in P. falciparum, shows varying domain combinations with EF-hands and pleckstrin homology domains. The analysis reveals a new subfamily of protein kinases having limited sequence similarity with previously known subfamilies. A new transmembrane kinase with 6 membrane-spanning regions is identified. Putative apicoplast targeting sequences have been detected in some of these protein kinases, suggesting their export to the apicoplast.  相似文献   

2.
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules, aiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization.  相似文献   

3.
Bioinformatic analyses of gene homologues have revealed functionally conserved epitopes between human and rodent malaria parasites. Here, we present experimental evidence for the presence of functionally and antigenically conserved domains between Plasmodium falciparum and Plasmodium yoelii asexual blood-stages. Merozoite released soluble proteins (MRSPs) from both P. falciparum and P. yoelii bound to heterologous mouse or human red blood cells, respectively. The presence of conserved antigenic epitopes between the two species of parasites was evident by the inhibitory effect of antibodies, developed against P. yoelii in convalescent mice, on P. falciparum growth and merozoite reinvasion in vitro. Furthermore, mice immunized with P. falciparum MRSPs were protected from infection by a P. yoelii challenge. These data indicate that different species of Plasmodium contain antigenically conserved interspecies domains, which are immunogenic and, thus constitute a potential novel antigen source for vaccine development and testing using a mouse model.  相似文献   

4.
Four Plasmodium species cause malaria in humans, Plasmodium falciparum being the most widely studied to date. All Plasmodium species have paired club-shaped organelles towards their apical extreme named rhoptries that contain many lipids and proteins which are released during target cell invasion. P. falciparum RhopH3 is a rhoptry protein triggering important immune responses in patients from endemic regions. It has also been shown that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes. Recent immunisation studies in mice with the Plasmodium yoelii and Plasmodium berghei RhopH3 P. falciparum homologue proteins found that they are able to induce protection in murine models. This study described identifying and characterising RhopH3 protein in Plasmodium vivax; it is encoded by a seven exon gene and expressed during the parasite's asexual stage. PvRhopH3 has similar processing to its homologue in P. falciparum and presents a cellular immunolocalisation pattern characteristic of rhoptry proteins.  相似文献   

5.
The 110 kDa/Rhop-3 rhoptry protein of Plasmodium falciparum is non-covalently associated with two other proteins, the 140 kDa Rhop-1 and the 130 kDa Rhop-2. cDNAs encoding Rhop-3 from Plasmodium yoelii were isolated using rhoptry-specific antisera from Plasmodium falciparum, P. yoelii, and Plasmodium chabaudi. The cDNAs encoded peptides with partial homology to the C-terminal region (residues 541-861) of P. falciparum Rhop-3. Core regions of homology to the P. falciparum gene will be useful in determining the biological role of Rhop-3 and its potential as a vaccine candidate for malaria.  相似文献   

6.
7.
Krupa A  Anamika  Srinivasan N 《Gene》2006,380(1):1-13
A comparative analysis on protein kinases encoded in the completely sequenced genomes of two plant species, namely Arabidopsis thaliana and Oryza sativa spp japonica cv. Nipponbare is reported in the current study. We have analysed 836 and 1386 kinases identified from A. thaliana and the O. sativa genomes respectively. Their classification into known subfamilies reveals selective expansions of the plant receptor kinase subfamily comprising of Ser/Thr receptor kinases. The presence of calcium dependent kinases, and potential absence of cyclic nucleotide-dependent protein kinase of the type found in other (non-plant) eukaryotes, are other notable features of the two plant kinomes described here. An analysis on domain organisation of each of the protein kinases encoded in the plant genome has been carried out. Uncommon composition of functional domains like nuclear translocation factor domain, redox sensor domain (PAS), ACT and lectin domains are observed in few protein kinases shared between the two plant species. Biochemical functions characteristic of the domains recruited in these protein kinase gene products suggest their mode of regulation by alternate cellular localisation, oxidation potential, amino acid flux and binding of carbohydrates. Occurrence of multi-functional kinases with diverse enzymatic modules, such as Transposases and peptidases, tethered to the kinase catalytic domain is another interesting feature of the protein kinase complement of the O. sativa genome. Co-occurrence of diverse nucleotide and carbohydrate binding domains with catalytic kinase domain containing gene products has also been observed. Putative homologues of protein kinases of A. thaliana that regulate plant-specific physiological processes like ethylene hormone response, somatic embryogenesis and pathogen defence have been identified in O. sativa genome as well.  相似文献   

8.
Protein kinases play important roles in almost all major signaling and regulatory pathways of eukaryotic organisms. Members in the family of protein kinases make up a substantial fraction of eukaryotic proteome. Analysis of the protein kinase repertoire (kinome) would help in the better understanding of the regulatory processes. In this article, we report the identification and analysis of the repertoire of protein kinases in the intracellular parasite Entamoeba histolytica. Using a combination of various sensitive sequence search methods and manual analysis, we have identified a set of 307 protein kinases in E. histolytica genome. We have classified these protein kinases into different subfamilies originally defined by Hanks and Hunter and studied these kinases further in the context of noncatalytic domains that are tethered to catalytic kinase domain. Compared to other eukaryotic organisms, protein kinases from E. histolytica vary in terms of their domain organization and displays features that may have a bearing in the unusual biology of this organism. Some of the parasitic kinases show high sequence similarity in the catalytic domain region with calmodulin/calcium dependent protein kinase subfamily. However, they are unlikely to act like typical calcium/calmodulin dependent kinases as they lack noncatalytic domains characteristic of such kinases in other organisms. Such kinases form the largest subfamily of kinases in E. histolytica. Interestingly, a PKA/PKG-like subfamily member is tethered to pleckstrin homology domain. Although potential cyclins and cyclin-dependent kinases could be identified in the genome the likely absence of other cell cycle proteins suggests unusual nature of cell cycle in E. histolytica. Some of the unusual features recognized in our analysis include the absence of MEK as a part of the Mitogen Activated Kinase signaling pathway and identification of transmembrane region containing Src kinase-like kinases. Sequences which could not be classified into known subfamilies of protein kinases have unusual domain architectures. Many such unclassified protein kinases are tethered to domains which are Cysteine-rich and to domains known to be involved in protein-protein interactions. Our kinome analysis of E. histolytica suggests that the organism possesses a complex protein phosphorylation network that involves many unusual kinases.  相似文献   

9.
Reversible protein phosphorylation by protein kinases and phosphatases is a ubiquitous signaling mechanism in all eukaryotic cells. A multilevel hidden Markov model library is presented which is able to classify protein kinases into one of 12 families, with a misclassification rate of zero on the characterized kinomes of H. sapiens, M. musculus, D. melanogaster, C. elegans, S. cerevisiae, D. discoideum, and P. falciparum. The Library is shown to outperform BLASTP and a general Pfam hidden Markov model of the kinase catalytic domain in the retrieval and family-level classification of protein kinases. The application of the Library to the 38 unclassified kinases of yeast enriches the yeast kinome in protein kinases of the families AGC (5), CAMK (17), CMGC (4), and STE (1), thereby raising the family-level classification of yeast conventional protein kinases from 66.96 to 90.43%. The application of the Library to 21 eukaryotic genomes shows seven families (AGC, CAMK, CK1, CMGC, STE, PIKK, and RIO) to be present in all genomes analyzed, and so is likely to be essential to eukaryotes. Putative tyrosine kinases (TKs) are found in the plants A. thaliana (2), O. sativa ssp. Indica (6), and O. sativa ssp. Japonica (7), and in the amoeba E. histolytica (7). To our knowledge, TKs have not been predicted in plants before. This also suggests that a primitive set of TKs might have predated the radiation of eukaryotes. Putative tyrosine kinase-like kinases (TKLs) are found in the fungi C. neoformans (2), P. chrysosporium (4), in the Apicomplexans C. hominis (4), P. yoelii (4), and P. falciparum (6), the amoeba E. histolytica (109), and the alga T. pseudonana (6). TKLs are found to be abundant in plants (776 in A. thaliana, 1010 in O. sativa ssp. Indica, and 969 in O. sativa ssp. Japonica). TKLs might have predated the radiation of eukaryotes too and have been lost secondarily from some fungi. The application of the Library facilitates the annotation of kinomes and has provided novel insights on the early evolution and subsequent adaptations of the various protein kinase families in eukaryotes.  相似文献   

10.
Plasmodium falciparum sporozoites invade liver cells in humans and set the stage for malaria infection. Circumsporozoite protein (CSP), a predominant surface antigen on sporozoite surface, has been associated with the binding and invasion of liver cells by the sporozoites. Although CSP across the Plasmodium genus has homology and conserved structural organization, infection of a non-natural host by a species is rare. We investigated the role of CSP in providing the host specificity in P. falciparum infection. CSP from P. falciparum, P. gallinaceum, P. knowlesi, and P. yoelii species representing human, avian, simian, and rodent malaria species were recombinantly expressed, and the proteins were purified to homogeneity. The recombinant proteins were evaluated for their capacity to bind to human liver cell line HepG2 and to prevent P. falciparum sporozoites from invading these cells. The proteins showed significant differences in the binding and sporozoite invasion inhibition activity. Differences among proteins directly correlate with changes in the binding affinity to the sporozoite receptor on liver cells. P. knowlesi CSP (PkCSP) and P. yoelii CSP (PyCSP) had 4,790- and 17,800-fold lower affinity for heparin in comparison to P. falciparum CSP (PfCSP). We suggest that a difference in the binding affinity for the liver cell receptor is a mechanism involved in maintaining the host specificity by the malaria parasite.  相似文献   

11.
The molecular mechanisms regulating cell proliferation and development during the life cycle of malaria parasites remain to be elucidated. The peculiarities of the cell cycle organization during Plasmodium falciparum schizogony suggest that the modalities of cell cycle control in this organism may differ from those in other eukaryotes. Indeed, existing data concerning Plasmodium cell cycle regulators such as cyclin-dependent kinases reveal structural and functional properties that are divergent from those of their homologues in other systems. The work presented here lies in the context of the exploitation of the recently available P. falciparum genome sequence toward the characterization of putative cell cycle regulators. We describe the in silico identification of three open reading frames encoding proteins with maximal homology to various members of the cyclin family and demonstrate that the corresponding polypeptides are expressed in the erythrocytic stages of the infection. We present evidence that these proteins possess cyclin activity by demonstrating either their association with histone H1 kinase activity in parasite extracts or their ability to activate PfPK5, a P. falciparum cyclin-dependent kinase homologue, in vitro. Furthermore, we show that RINGO, a protein with no sequence homology to cyclins but that is nevertheless a strong activator of mammalian CDK1/2, is also a strong activator of PfPK5 in vitro. This raises the possibility that "cryptic" cell cycle regulators may be found among the 50% of the open reading frames in the P. falciparum genome that display no homology to any known proteins.  相似文献   

12.
Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified.  相似文献   

13.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and first invade the liver of the mammalian host, as an obligatory step of the life cycle of the malaria parasite. Within hepatocytes, Plasmodium sporozoites reside in a membrane-bound vacuole, where they differentiate into exoerythrocytic forms and merozoites that subsequently infect erythrocytes and cause the malaria disease. Plasmodium sporozoite targeting to the liver is mediated by the specific binding of major sporozoite surface proteins, the circumsporozoite protein and the thrombospondin-related anonymous protein, to glycosaminoglycans on the hepatocyte surface. Still, the molecular mechanisms underlying sporozoite entry and differentiation within hepatocytes are largely unknown. Here we show that the tetraspanin CD81, a putative receptor for hepatitis C virus, is required on hepatocytes for human Plasmodium falciparum and rodent Plasmodium yoelii sporozoite infectivity. P. yoelii sporozoites fail to infect CD81-deficient mouse hepatocytes, in vivo and in vitro, and antibodies against mouse and human CD81 inhibit in vitro the hepatic development of P. yoelii and P. falciparum, respectively. We further demonstrate that the requirement for CD81 is linked to sporozoite entry into hepatocytes by formation of a parasitophorous vacuole, which is essential for parasite differentiation into exoerythrocytic forms.  相似文献   

14.
In eukaryotes, the formation of protein disulfide bonds among cysteine residues is mediated by protein disulfide isomerases and occurs in the highly oxidised environment of the endoplasmic reticulum. This process is poorly understood in malaria parasites. In this paper, we report the gene isolation, sequence and phylogenetic comparisons, protein structure and thioredoxin-domain analyses of nine protein disulfide isomerases-like molecules from five species of malaria parasites including Plasmodium falciparum and Plasmodium vivax (human), Plasmodium knowlesi (simian) and Plasmodium berghei and Plasmodium yoelii (murine). Four of the studied protein disulfide isomerases belong to P. falciparum malaria and have been named PfPDI-8, PfPDI-9, PfPDI-11 and PfPDI-14, based on their chromosomal location. Among these, PfPDI-8 bears the closest similarity to a prototype PDI molecule with two thioredoxin domains (containing CGHC active sites) and a C-terminal Endoplasmic reticulum retrieval signal, SEEL. PfPDI-8 is expressed during all stages of parasite life cycle and is highly conserved (82-96% identity at amino acid level) in the other four Plasmodium species studied. Detailed biochemical analysis of PfPDI-8 revealed that this molecule is a potent oxido-reductase enzyme that facilitated the disulfide-dependent conformational folding of EBA-175, a leading malaria vaccine candidate. These studies open the avenues to understand the process of protein folding and secretory pathway in malaria parasites that in turn might aid in the production of superior recombinant vaccines and provide novel drug targets.  相似文献   

15.
Plasmodium sporozoites can enter host cells by two distinct pathways, either through disruption of the plasma membrane followed by parasite transmigration through cells, or by formation of a parasitophorous vacuole (PV) where the parasite further differentiates into a replicative exo-erythrocytic form (EEF). We now provide evidence that following invasion without PV formation, transmigrating Plasmodium falciparum and Plasmodium yoelii sporozoites can partially develop into EEFs inside hepatocarcinoma cell nuclei. We also found that rodent P. yoelii sporozoites can infect both mouse and human hepatocytes, while human P. falciparum sporozoites infect human but not mouse hepatocytes. We have previously reported that the host tetraspanin CD81 is required for PV formation by P. falciparum and P. yoelii sporozoites. Here we show that expression of human CD81 in CD81-knockout mouse hepatocytes is sufficient to confer susceptibility to P. yoelii but not P. falciparum sporozoite infection, showing that the narrow P. falciparum host tropism does not rely on CD81 only. Also, expression of CD81 in a human hepatocarcinoma cell line is sufficient to promote the formation of a PV by P. yoelii but not P. falciparum sporozoites. These results highlight critical differences between P. yoelii and P. falciparum sporozoite infection, and suggest that in addition to CD81, other molecules are specifically required for PV formation during infection by the human malaria parasite.  相似文献   

16.
Malaria is a major threat to world health. The identification of parasite targets for drug development is a priority and parasitic protein kinases suggest themselves as suitable targets as many display profound structural and functional divergences from their host counterparts. In this paper, we describe the structure of the orphan protein kinase, Plasmodium falciparum protein kinase 7 (PFPK7). Several Plasmodium protein kinases contain extensive insertions, and the structure of PFPK7 reveals how these may be accommodated as excursions from the canonical eukaryotic protein kinase fold. The constitutively active conformation of PFPK7 is stabilized by a structural motif in which the role of the conserved phosphorylated residue that assists in structuring the activation loop of many protein kinases is played by an arginine residue. We identify two series of PFPK7 ATP-competitive inhibitors and suggest further developments for the design of selective and potent PFPK7 lead compounds as potential antimalarials.  相似文献   

17.
As part of our search for new antimalarial drugs, we have screened for inhibitors of Pfnek-1, a protein kinase of Plasmodium falciparum, in south Pacific marine sponges. On the basis of a preliminary screening, the ethanolic crude extract of a new species of Xestospongia collected in Vanuatu was selected for its promising activity. A bioassay-guided fractionation led us to isolate xestoquinone which inhibits Pfnek-1 with an IC(50) around 1 microM. Among a small panel of plasmodial protein kinases, xestoquinone showed modest protein kinase inhibitory activity toward PfPK5 and no activity toward PfPK7 and PfGSK-3. Xestoquinone showed in vitro antiplasmodial activity against a FCB1 P. falciparum strain with an IC(50) of 3 microM and a weak selectivity index (SI 7). Xestoquinone exhibited a weak in vivo activity at 5mg/kg in Plasmodium berghei NK65 infected mice and was toxic at higher doses.  相似文献   

18.
Infection of hepatocytes by Plasmodium falciparum sporozoites requires the host tetraspanin CD81. CD81 is also predicted to be a coreceptor, along with scavenger receptor BI (SR-BI), for hepatitis C virus. Using SR-BI-knockout, SR-BI-hypomorphic and SR-BI-transgenic primary hepatocytes, as well as specific SR-BI-blocking antibodies, we demonstrate that SR-BI significantly boosts hepatocyte permissiveness to P. falciparum, P. yoelii, and P. berghei entry and promotes parasite development. We show that SR-BI, but not the low-density lipoprotein receptor, acts as a major cholesterol provider that enhances Plasmodium infection. SR-BI regulates the organization of CD81 at the plasma membrane, mediating an arrangement that is highly permissive to penetration by sporozoites. Concomitantly, SR-BI upregulates the expression of the liver fatty-acid carrier L-FABP, a protein implicated in Plasmodium liver-stage maturation. These findings establish the mechanistic basis of the CD81-dependent Plasmodium sporozoite invasion pathway.  相似文献   

19.
20.
Plasmodium yoelii 17XL was used to investigate the mechanism of Plasmodium falciparum-caused cerebral malaria, although its histological effect on other mouse organs is still unclear. Here, histological examination was performed on mice infected with P. yoelii 17XL; the effect of P. yoelii 17XL infection on anemia and body weight loss, as well as its lesions in the brain, liver, kidney, lung, and spleen, also was investigated. Plasmodium yoelii 17XL-infected red blood cells were sequestered in the microcirculation of the brain and in the kidney. Compared with the nonlethal P. yoelii 17XNL strain, infection by P. yoelii 17XL caused substantial pulmonary edema, severe anemia, and significant body weight loss. Although P. yoelii 17XNL and 17XL produced a similar focal necrosis in the mouse liver, infection of P. yoelii 17XL induced coalescing of red and white pulp. Mortality caused by P. yoelii 17XL may be due to cerebral malaria, as well as respiratory distress syndrome and severe anemia. Plasmodium yoelii 17XL-infected rodent malaria seems to be a useful model for investigating severe malaria caused by P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号