首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently identified a new class III chitinase from pomegranate seeds (PSC). Interestingly, this new chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a Ca-storage protein. Analysis of the amino acid sequence showed that this enzyme is rich in acidic amino acid residues, especially Asp, which are responsible for calcium binding. Different from other known chitinases, PSC is located in the stroma of amyloplasts in pomegranate seeds. Transmission electron microscopy (TEM) analysis indicated that the embryonic cells of pomegranate seeds are rich in calcium ions, most of which are distributed in the stroma and the starch granule of the amyloplasts, consistent with the above idea that PSC is involved in calcium storage, a newly non-defensive function.  相似文献   

2.
The glucose-6-phosphate/phosphate translocator (GPT) acts as an importer of carbon into the plastid. Despite the potential importance of GPT for storage in crop seeds, its regulatory role in biosynthetic pathways that are active during seed development is poorly understood. We have isolated GPT1 from Vicia narbonensis and studied its role in seed development using a transgenic approach based on the seed-specific legumin promoter LeB4. GPT1 is highly expressed in vegetative sink tissues, flowers and young seeds. In the embryo, localized upregulation of GPT1 at the onset of storage coincides with the onset of starch accumulation. Embryos of transgenic plants expressing antisense GPT1 showed a significant reduction (up to 55%) in the specific transport rate of glucose-6-phosphate as determined using proteoliposomes prepared from embryos. Furthermore, amyloplasts developed later and were smaller in size, while the expression of genes encoding plastid-specific translocators and proteins involved in starch biosynthesis was decreased. Metabolite analysis and stable isotope labelling demonstrated that starch biosynthesis was also reduced, although storage protein biosynthesis increased. This metabolic shift was characterized by upregulation of genes related to nitrogen uptake and protein storage, morphological variation of the protein-storing vacuoles, and a crude protein content of mature seeds of transgenics that was up to 30% higher than in wild-type. These findings provide evidence that (1) the prevailing level of GPT1 abundance/activity is rate-limiting for the synthesis of starch in developing seeds, (2) GPT1 exerts a controlling function on assimilate partitioning into storage protein, and (3) GPT1 is essential for the differentiation of embryonic plastids and seed maturation.  相似文献   

3.
Oilseed plants like Arabidopsis (Arabidopsis thaliana) develop green photosynthetically active embryos. Upon seed maturation, the embryonic chloroplasts degenerate into a highly reduced plastid type called the eoplast. Upon germination, eoplasts redifferentiate into chloroplasts and other plastid types. Here, we describe seedling plastid development1 (spd1), an Arabidopsis seedling albino mutant capable of producing normal green vegetative tissues. Mutant seedlings also display defects in etioplast and amyloplast development. Precocious germination of spd1 embryos showed that the albino seedling phenotype of spd1 was dependent on the passage of developing embryos through the degreening and dehydration stages of seed maturation, suggesting that SPD1 is critical during eoplast development or early stages of eoplast redifferentiation. The SPD1 gene was found to encode a protein containing a putative chloroplast-targeting sequence in its amino terminus and also domains common to P-loop ATPases. Chloroplast localization of the SPD1 protein was confirmed by targeting assays in vivo and in vitro. Although the exact function of SPD1 remains to be defined, our findings reveal aspects of plastid development unique to embryo-derived cells.  相似文献   

4.
5.
Life strategy of plants depends on successful seed germination in the available environment, and sufficient soil water is the most important external factor. Taking into account a broad spectrum of roles played by water in seed viability and its maintenance during germination, the review embraces early germination events in seeds different in their water status. Two seed types are compared, namely orthodox and recalcitrant seeds, in terms of water content in the embryonic axes, vacuole biogenesis, and participation of water channels in membrane water transport. Mature orthodox seeds desiccate to low water content and remain viable during storage, whereas mature recalcitrant seeds are shed while well hydrated but die during desiccation and cannot be stored. In orthodox Vicia faba minor air-dry seeds remaining viable at 8–10% water content in embryonic axes, the vacuoles in hypocotyl are preserved as protein storage vacuoles, then restored to vacuoles in imbibing seeds in the course of protein mobilization. However, in newly produced meristematic root cells, the vacuoles are formed de novo from provacuoles. In recalcitrant Aesculus hippocastanum seeds, embryonic axes have a water content of 63–64% at shedding and they lack protein storage vacuoles but preserve vacuoles preformed in maturing seeds. Independent of the vacuolar biogenetic patterns, their further trend is similar; they expand and fuse, thus producing an osmotic compartment, which precedes and becomes an obligatory step for the initiation of cell elongation. Prior to this, water moves in imbibing seeds through the membranes by diffusion, although the aquaporins forming water channels are present. In both seed types, water channels are opened and actively participate in water transport only after growth initiation. Aquaporin gene expression and their composition change in broad bean embryonic axes after growth initiation. This is the way how a mass water flow into growing seedling cells is achieved, independent of differences in seed water content and vacuole biogenesis patterns.  相似文献   

6.
7.
When recalcitrant propagules (seeds) of Avicennia marina werestored in a dry air stream there was no significant change intheir moisture content for 10 days, after which it declinedrapidly. Seed viability remained high during this 10-d period,only then declining. Ultrastructural changes in embryonic rootprimordium cells during the 10-d storage period were similarto those characterizing germination. It is suggested that thecontinuation of germination processes after shedding may beresponsible for the deterioration in stored recalcitrant seeds. Avicennia marina, recalcitrance, seed storage, germination  相似文献   

8.
9.
The main storage compound in lupin seeds is protein, whose content can reach up to 45–50 % of dry matter. However, seeds of some lupin species can also contain quite a large amount of storage lipid. The range of lipid content in lupin seeds is from about 6 to about 20 % of dry matter. Storage lipid in developing seeds is synthesized mainly from sugars delivered by mother plants. During seed germination, one of the main end-products of storage lipid breakdown is also sugars. Thus, the sugar level in tissues is considered an important regulatory agent, during both lipid accumulation and lipid breakdown. Generally, in developing legume seeds, there is a strong negative relation between accumulation of storage protein and storage lipid. Results obtained in developing lupin cotyledons cultured in vitro pointed to the possibility of a positive relation between protein and lipid accumulation. Such a positive effect could be caused by nitrate. During lupin seed germination and seedling development, the utilization of storage lipid is enhanced under sugar deficiency conditions in tissues and is controlled at the gene expression level. However, under sugar starvation conditions, autophagy is significantly enhanced, and it can cause disturbances in storage lipid breakdown. The hypothesis of pexophagy, i.e., autophagic degradation of peroxisomes under sugar starvation conditions during lupin seed germination, has been taken into consideration. The flow of lipid-derived carbon skeletons to amino acids was discovered in germinating lupin seeds, and this process is clearly more intense in sucrose-fed embryo axes. At least four alternative or mutually complementary pathways of carbon flow from storage lipid to amino acids in germinating lupin seeds are postulated. The different strategies of storage compound breakdown during lupin seed germination are also discussed.  相似文献   

10.
Variability in seed germination behaviour of Cistus ladanifer L. (rockrose), a Cistaceous species widely distributed in the Mediterranean Basin, was studied in a central Spanish population under controlled conditions. No correlation between seed moisture content and germination was found. Great variability in germination was found among seeds of the population studied, not only between seeds belonging to different mother plants, but also between those collected from different capsules on the same plant. In most cases, seeds preheated at 100 °C for 30 minutes showed a significant increase in germination. This germination behaviour is related to fire regimes as this plant is a typical shrubby element of the mediterranean shrublands. Percent germination did not vary significantly after several months of seed storage at room temperature. In the same way, no difference was found in final germination percentage of seeds stored under room temperature vs. seeds stored under cold conditions.  相似文献   

11.
12.
13.
陈建敏  孙德兰 《植物学报》2005,22(5):541-548
莲子叶细胞中储存了丰富的营养物质, 主要为蛋白质、淀粉和淀粉质体DNA。这些贮藏物质为种子萌发和幼苗的生长提供必需的能量和养料。通过组织化学和显微镜观察, 研究莲从种子萌发到植株生长至具有4个节时, 子叶中贮藏物质消耗的全过程。在此过程中, 子叶中的贮藏物质不断降解,营养物质发生转运。蛋白体首先发生降解, 其大量降解主要发生在幼苗三叶期。淀粉质体降解时会聚 集成团, 之后体积逐渐减小, 最后完全降解。种子萌发后65天是子叶贮藏物质消耗末期, 淀粉质体DNA的含量比萌发后20天的三叶期明显减少。细胞壁的形态结构发生多种形式的变化, 细胞壁发生的这些变化与子叶细胞间物质的运输有关。含多糖的球形颗粒通过维管束在子叶中运输。  相似文献   

14.
莲种子萌发和幼苗生长时期营养物质的代谢变化   总被引:1,自引:1,他引:1  
莲子叶细胞中储存了丰富的营养物质,主要为蛋白质、淀粉和淀粉质体DNA.这些贮藏物质为种子萌发和幼苗的生长提供必需的能量和养料.通过组织化学和显微镜观察,研究莲从种子萌发到植株生长至具有4个节时,子叶中贮藏物质消耗的全过程.在此过程中,子叶中的贮藏物质不断降解,营养物质发生转运.蛋白体首先发生降解,其大量降解主要发生在幼苗三叶期.淀粉质体降解时会聚集成团,之后体积逐渐减小,最后完全降解.种子萌发后65天是子叶贮藏物质消耗末期,淀粉质体DNA的含量比萌发后20天的三叶期明显减少.细胞壁的形态结构发生多种形式的变化,细胞壁发生的这些变化与子叶细胞间物质的运输有关.含多糖的球形颗粒通过维管束在子叶中运输.  相似文献   

15.
The hypothesis that endogenous short chain fatty acids (C 6-C 10) are important in maintaining seeds of wild oat (Avena fatua L.) in the dormant state by acting as natural germination inhibitors (Berrie, Buller, Don, Parker, 1979 Plant Physiol 63: 758-764) was investigated. When germination of nondormant seeds was inhibited by treatment with short chain fatty acids, the seeds did not revert to a similar biochemical and physiological state as exhibited by dormant seeds. First, nonanoic acid-induced inhibition of seed germination was not reversed by hormone treatments which normally break dormancy in wild oat seeds. Second, nondormant seeds treated with short chain fatty acids maintained similar relative proportions of the pentose phosphate pathway and the Embden-Meyerhoff-Parnas pathway for respiratory glucose metabolism as that found in the nondormant controls. Seeds imbibed in the presence of nonanoic acid lost more amino acids and proteins into the imbibition solution than did the untreated controls, suggesting membrane damage had occurred. Inasmuch as increasing concentrations of nonanoic acid also progressively reduced the growth of the coleoptile and roots of intact seedlings until all growth ceased and no germination occurred, the inhibition of seed germination could be due to a nonspecific inhibition of growth of the embryo, perhaps because of disruption of membrane structure and function. Finally, no correlation between endogenous levels of short chain fatty acids in seeds or isolated embryonic axes and seed dormancy could be demonstrated.  相似文献   

16.
17.
Ligularia virgaurea is widely distributed in the alpine meadows of the eastern Qinghai-Tibet plateau. We studied the effects of temperature and seed storage length on seed germination in a laboratory experiment, the effects of seed mass and light intensity on seed emergence in a pot experiment, and the effect of meadow disturbance intensity on seed emergence in a field experiment. Our results showed that seeds of L. virgaurea germinated well under a wide range of temperatures. Germination percentage decreased with increased seed storage length. When seeds were stored for either 6 or 12 months the germination percentage increased with decreasing temperature. The emergence percentage of large seeds was higher than that of small seeds. Seedling survival of large seeds was greater than that of small seeds in 75% and 50% of natural irradiance. Large seeds of L. virgaurea were more successful colonizers in the alpine meadows. Seeds of L. virgaurea germinated in both disturbed meadows and non-disturbed meadows, but seed emergence and seedling establishment were higher in the disturbed meadows, that is, disturbance could facilitate the recruitment and establishment of L. virgaurea .  相似文献   

18.
Beech seed physiology, including the effect of stress proteins like late embryogenesis abundant (LEA) and small heat shock proteins (sHSP) on viability during storage, is not fully understood. Four lots of beech (Fagus sylvatica L.) seeds have been stored for 1, 4, 6 and 8 years at −10 °C and 8–9% moisture content (MC). Under these conditions, the germination capacity ranges from 81.5% to 100% in the youngest seeds. However, the seeds decrease in vigour with prolonged time of storage. Dehydrins and dehydrin-like proteins were identified both in cotyledons and embryonic axes of the dry stored seeds. In general, decreased contents of LEA proteins as well as reduced content of total soluble protein were detected during prolonged storage. The contents of soluble proteins in embryonic axes and nearly all detected dehydrins and dehydrin-like proteins were correlated with germination capacity. Moreover a sHSP with molecular mass of approximately 22 kDa was identified. The largest content of this protein was observed in the oldest seeds, especially in embryonic axes. The proteins identified may play a protective role during water deficit and storage.  相似文献   

19.
20.
Rice is a staple crop with a small genome of 389 Mb. Rice grain is a source of carbohydrates and proteins and has a relatively low protein content compared to other legume seeds. Glutelin and prolamin are the major storage proteins in rice. Prolamins are characterized by high glutamine and proline content and are generally soluble only in strong alcohol solutions. In this study, we obtained a total of 51,383 expressed sequence tags (ESTs) from Ilpumbyeo (Oryza sativa L.), of which 33,201 and 18,182 clones were obtained from immature and germinating seeds, respectively. From the EST clones, 15,148 unigenes were identified, and 2,590 genes were expressed in both immature and germinating seeds. Gene expression profiling of rice prolamins indicated that prolamin gene expression increased 5 days after heading and reached maximal expression after 30 days, suggesting a high demand for prolamins during seed development and germination. Phylogenetic analysis grouped 33 prolamin genes based on the abundance of sulfur-containing amino acids methionine and cysteine according to the deduced amino acid sequences. Our results enhance the understanding of the regulation of seed maturation and germination, which can result in improved agricultural traits for the seed industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号