首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensitivities to recombinant human tumor necrosis factor- (TNF-) and chemotherapeutic agents (cisplatin, peplomycin, methotrexate) were evaluated in 20 tumor cells of head and neck squamous cell carcinomas, using a dye uptake method. Also, numbers of TNF receptors of these tumor cells were measured by Scatchard plot analysis. There was no relationship between the number of TNF- receptors and the sensitivity to TNF-. Furthermore, there was no correlation between the sensitivity to TNF- and that to chemotherapeutic drugs, nor between the sensitivity to TNF- and the clinical response to chemotherapy including of cisplatin and peplomycin. The sensitivity to TNF- was higher in poorly differentiated carcinomas than in well differentiated ones.Abbreviations BSA Bovine serum albumin - CDDP Cisplatin - 5-Fu 5-fluorouracil - IC50 Inhibition concentration 50 - MTX Methotrexate - PLM Peplomycin - TNF- Tumor necrosis factor-  相似文献   

2.
Human blood monocytes were obtained from peripheral blood of healthy donors by counter-flow centrifugal elutriation. Functional integrity of monocytes for production of interleukin 1 (IL-1) and tumor necrosis factor (TNF-) in response toNocardia rubra cell wall skeleton (N-CWS) was examined by bioassay and enzyme immunoassay. Monocytes treated with N-CWS at more than 0.5 g/ml produced IL-1 and TNF- extracellularly. Extracellular TNF activity appeared within 4 h, and maximally, 16 h after N-CWS stimulation, whereas longer time was needed for IL-1 activity to appear, the peak production being at 24 h. The neutralizing experiment also showed that anti TNF- antibody did not affect IL-1 production by the monocytes treated with N-CWS, suggesting independen cy of IL-1 production of TNF-.These results suggest that the therapeutic antitumor effect of N-CWS is due, in part at least, to the augmented production of these monokines.  相似文献   

3.
Summary Metabolic stabilization of pharmacologically active peptides can be achieved by incorporation of sterically hindered non-natural amino acids, e.g. C , -disubstituted amino acids.-Trifluoromethyl substituted amino acids, a subclass of C , -disubstituted amino acids, also fulfil this requirement while featuring additional properties based on the electronic influence of the fluorine substituents.This review summarizes the results concerning the stability of peptides containing-TFM amino acids towards proteolysis by-chymotrypsin. Furthermore, configurational effects of-TFMAla on the proteolytic stability of peptides are explained using empirical force field calculations. The influence of-TFMAla incorporation on the secondary structure of selected tripeptide amides is compared to the effects exerted by its fluorine-free analogue, aminoisobutyric acid.Finally, results on metabolic stabilization and biological activity of modified thyrotropin releasing hormone are interpreted.  相似文献   

4.
The limited proteolysis of human recombinant TNF- by trypsin yields two stable products resulting from cleavage after Arg6 and Arg44. In solution these two products remain associated together in a trimer with a Stokes' radius slightly greater than the radius of intact TNF- and, therefore, could not be separated from each other under nondenaturing conditions. This limited digest retains at least 20% of the activity of the original TNF- sample, and has a tertiary structure that is similar to that of the native protein by circular dichroism. On the other hand, incorrectly folded, inactive TNF- undergoes extensive digestion following similar treatment with trypsin. These results indicate that the active form of TNF- has a tight core structure which is maintained afterN-terminal cleavage and removal.  相似文献   

5.
The production of five chain variants (Hb G-Georgia, Hb St. Luke's, Hb Lloyd, Hb Montgomery, and Hb G-Philadelphia) in heterozygotes was evaluated through hematological observations, hemoglobin quantification, and biosynthetic studies. All heterozygotes for Hb St. Luke's and Hb Lloyd and most heterozygotes with Hb G-Georgia and Hb Montgomery had normal hematology and average / values of about 1.1. They were assigned a normal genotype (G/), although the proportions of Hb St. Luke's and Hb G-Georgia were low (10 to 13%) and those of Hb Lloyd and Hb Montgomery twice as high (20%). Data from short-term incubations confirmed this genotype for some of these heterozygotes. Isolated Hb St. Luke's and Hb G-Georgia gave low G/ values (0.2 and 0.3) indicating that these Hb variants were defective at the level of Hb assembly. Isolated Hb Montgomery and Hb G-Philadelphia, however, gave higher G/ values of 0.6 and 0.8, respectively. A second type of variability existed among Hb G-Georgia (20 vs. 13%), Hb Montgomery (28 vs. 20%), and Hb G-Philadelphia (47 vs. 34%) heterozygotes, in whom the levels of Hb G differed. The occurrence of higher levels of these three chain heterozygosities was associated with hematological or biosynthetic evidence of a mild or moderate chain deficiency due to an -thalassemia-2 heterozygosity (G/0 or 0G/) or a homozygosity (0G/0), respectively.This study was supported in part by USPHS Research Grants HLB-05168 and HLB-15158.  相似文献   

6.
The role of -tocopherol uptake system in human erythrocyte in the uptake of plasma -tocopherol has been suggested. However no information is available on -tocopherol uptake activity of human erythrocytes in the presence of high levels of D-glucose which is known to lead to pathological alterations in different cells including human erythrocytes. Therefore, in order to examine the effect of D-glucose on the binding of -tocopherol to human erythrocytes, the binding characteristics of -tocopherol to these cells were established first. Binding of [3H]-tocopherol to human erythrocytes was both saturable and specific. Scatchard analysis of -tocopherol binding to these cells showed the presence of two independent classes of binding sites with widely different affinities. The high affinity binding sites had a dissociation constant (Kd1) of 90 nM with a binding capacity (n1) of 900 sites per cell, whereas the low affinity binding sites had a dissociation constant (Kd2) of 5.2 M and a binding capacity (n2) of 105,400 sites per cell. Trypsin treatment abolished all the -tocopherol binding activity. Competition for the binding of -tocopherol to human erythrocytes was effective with other homologues of -tocopherol (-tocopherol, -tocopherol and -tocopherol) and their potency was almost equal to -tocopherol itself. The order of preference was -tocopherol > -tocopherol -tocopherol -tocopherol. Incubation of human erythrocytes with various concentrations of D-glucose did not affect -tocopherol uptake activity. Our data demonstrate the presence of an -tocopherol uptake system in human erythrocytes and that the -tocopherol uptake activity is not modulated by the presence of D-glucose.  相似文献   

7.
Calcium disturbances in the critically ill coincide with elevations of proinflammatory cytokines. The effects of tumor necrosis factor- (TNF-) and interleukin-6 (IL-6) on parathyroid hormone (PTH) secretion were investigated. IL-6 and TNF- had no acute effect on PTH secretion in extracellular Ca2+ concentrations of 0.5, 1.25 and 3.0 mM. In contrast to TNF-, cultures for 24 h in the presence of l0 ng/mL of IL-6 showed decreased PTH secretion by 51% and 29% in 0.5 mM and 1.25 mMCa2+ respectively. Neither IL-6 nor TNF-, affected cytoplasmic Ca2+ of the cells. We conclude that PTH secretion in vitro can be suppressed by IL-6 at clinically relevant concentrations. This suppression may aggravate hypocalcemia of the critically ill and attenuate the conventionally strong stimulation of the PTH release by reduction in serum calcium.  相似文献   

8.
In the present study we investigated the TNF- induced signal transduction mechanism in human neutrophil. Exogenously added TNF- affects both PKC activity and its translocation from cytosol to the membrane. Endogenous protein phosphorylation pattern is inhibited in TNF- induced neutrophil in Ca-dependent and Ca-independent manner, including a major 47 and 66 kDa cytosolic proteins, which may be implicated in superoxide anion generation. However TNF- dose dependently enhances the expression of -PKC isotype but not the -PKC. Morphology and cell cytotoxicity are studied in TNF- treated neutrophil to understand the TNF- induced cell death or apoptosis and these experiment is further confirmed by DNA fragmentation analysis. These results clearly demonstrate that TNF- induces cellular death of human neutrophil at least in part by enhanced expression of Ca-independent -PKC. These observations provide an insight towards understanding the function of -PKC in apoptotic pathway.  相似文献   

9.
Lipopolysaccharide is strongly associated with septic shock, leading to multiple organ failure. It can activate monocytes and macrophages to release proinflammatory mediators such as tumor necrosis factor- (TNF-), interleukin-1 (IL-1), and nitric oxide (NO). The present experiments were designed to induce endotoxin shock by an intravenous injection ofKlebsiella pneumoniae lipopolysaccharide (LPS, 10 mg/kg) in conscious rats. Arterial pressure and heart rate (HR) were continuously monitored for 48 h after LPS administration. N-Acetyl-cysteine was used to study its effects on organ damage. Biochemical substances were measured to reflect organ functions. Biochemical factors included blood urea nitrogen (BUN), creatinine (Cre), lactic dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate transferase (GOT), alanine transferase (GPT), TNF-, IL-1, methyl guanidine (MG), and nitrites/nitrates. LPS caused significant increases in blood BUN, Cre, LDH, CPK, GOT, GPT, TNF-, IL-1, MG levels, and HR, as well as a decrease in mean arterial pressure and an elevation of nitrites/nitrates. N-Acetylcysteine suppressed the release of TNF-, IL-1, and MG, but enhanced NO production. These actions ameliorate LPS-induced organ damage in conscious rats. The beneficial effects may suggest a potential chemopreventive effect of this compound in sepsis prevention and treatment.  相似文献   

10.
An X-ray diffraction analysis of the [Fmoc0,TOAC4,8, Leu-OMe11] analogue of thelipopeptaibol antibiotic trichogin A IV shows that the undecapeptide isfolded in a right-handed, mixed /310-helix. The helicalmolecules are connected in a head-to-tail arrangement along the b-axisthrough C=O···H-N intermolecular H-bonding. Thispacking mode generates a hydrophobic cavity where the FmocN-protecting groups are accommodated. The distances andangles between the nitroxide groups of the two TOAC residues, separated byone turn of the -helix, have been determined.  相似文献   

11.
1. The role of cytokines and other inflammatory mediators in the progression of ischemic brain injury is a new and exciting era of research. Evidence in support for a role for TNF in this respect is emerging as evidence on de novo upregulation of TNF following ischemia is now well established.2. TNF administered directly to the brain parenchyma elicits local microvascular injury in the form of pericapillary edema and leukocyte adhesion to cerebral capillaries.3. TNF administered into the cerebroventricular space prior to ischemia augment the extent of tissue damage and neurological deficits.4. Specific and potent inhibitors of TNF synthesis or TNF receptors must be developed and tried to prove firmly a role for TNF in ischemic brain injury.  相似文献   

12.
Recent work by a number of investigators has demonstrated that the process of bone matrix formation and mineralization is under the influence of growth factors and cytokines present in the local environment. Utilizing primary and established osteoblast cell culture systems, these studies have examined the regulation of bone matrix protein synthesis and deposition into the extracellular matrix (ECM) and subsequent mineralization. In previous studies, we have utilized the human osteoblastic cell line, HOS TE85, to study the effects of Tumor Necrosis Factor - alpha (TNF-) on the regulation of matrix proteins and proteolytic function in monolayer cultures as well as during the development and calcification of ECM formed by HOS TE85 cells during extended culture. Our studies demonstrate that TNF- inhibited formation and mineralization of nodules. In the study reported here, we evaluated the ultrastructural morphology of the cell-matrix complex formed by HOS TE85 cells in the presence and absence of TNF- at selected time points during the matrix development process utilizing both transmission electron microscopy and light microscopy. In the presence of TNF-, the cell-matrix complex does not develop normally, with a lack of organization and mineralization, when compared to untreated cells. The lack of mineralization appears to result from the lack of normal collagen fibril deposition and formation of an appropriate ECM essential for the mineralization process. These results support our previous observations that TNF- inhibits HOS TE85 cells from forming a mineralizing ECM by inhibiting incorporation of collagen into the ECM and inducing the synthesis of proteolytic enzymes capable of degrading collagen in the ECM.  相似文献   

13.
The influence of n-propanol on the overall -helical conformation of -globin, apocytochrome C, and the functional domain of streptococcal M49 protein (pepM49) and its consequence on the proteolysis of the respective proteins has been investigated. A significant amount of -helical conformation is induced into these proteins atpH 6.0 and 4°C in the presence of relatively low concentrations of n-propanol. The induction of -helical conformation into the proteins increased as a function of the propanol concentration, the maximum induction occurring around 30% n-propanol. In the case of -globin, the fluorescence of its tryptophyl residues also increased as a function of n-propanol concentration, the midpoint of this transition being around 20% n-propanol. Furthermore, concomitant with the induction of helical conformation into these proteins, the proteolysis of their polypeptide chain by V8 protease also gets restricted. The -helical conformation induced into - and -globin by n-propanol decreased as the temperature is raised from 4 to 24°C. In contrast, the -helical conformation of both - and -chain (i.e., globin with noncovalently bound heme) did not exhibit such a sensitivity to this change in temperature. However, distinct differences exist between the n-propanol induced -helical conformation of globins and the -helical conformation of - and -chains. A cross-correlation of the n-propanol induced increase in the fluorescence of -globin with the corresponding increase in the -helical conformation of the polypeptide chain suggested that the fluorescence increase represents a structural change of the protein that is secondary to the induction of the -helical conformation into the protein (i.e., an integration of the helical conformation induced to the segments of the polypeptide chain to influence the microenvironment of the tryptophyl residues). Presumably, the fluorescence increase is a consequence of the packing of the helical segments of globin to generate a native-like structure. The induction of -helical conformation into these proteins in the presence of n-propanol and the consequent generation of native-like conformation is not unique to n-propanol. Trifluoroethanol, another helix-inducing organic solvent, also behaves in the same fashion as n-propanol. However, in contrast to the proteins described above, n-propanol could neither induce an -helical conformation into performic acid oxidized RNAse-A nor restrict its proteolysis by proteases. Thus, the high sensitivity of apoproteins and the protein domains to assume -helical conformation in the presence of low concentration of n-propanol with a concomitant restriction of the proteolytic susceptibility of their polypeptide chain appears to be unique to those proteins that exhibit high -helical propensities. Apparently, this phenomenon of helix induction and the restriction of proteolysis reflects the formation of rudimentary tertiary interaction of the native protein and is unique to apoproteins or structural domains of -helical proteins. Consistent with this concept, the induction of -helical conformation into shorter polypeptide fragments of 30 residues, (e.g., 1-30, which exists in an -helical conformation in hemoglobin) is very low. Besides, this peptide exhibited neither the high sensitivity to the low concentrations of n-propanol seen with the apoproteins/protein domains nor the resistance toward proteolysis. The results suggest that the organic cosolvent induced decrease in the conformational flexibility of the apoprotein, and the consequent restriction of their proteolytic cleavage provides an opportunity to develop new strategies for protease catalyzed segment condensation reactions.  相似文献   

14.
Ischemia-reperfusion (I/R) injury is a complex process involving the generation and release of inflammatory cytokines, and the accumulation and infiltration of neutrophils and macrophages, which disturbs the microcirculatory hemodynamics. Nonetheless, ischemic preconditioning (IPC) is known to produce immediate tolerance to subsequent prolonged I/R insults, although its underlying mechanism largely remains unknown. Our study investigated the role of the IB--NF-B-TNF- (tumor necrosis factor-) pathway in IPC's ability to ameliorate I/R-induced microcirculatory disturbances in rat cremaster muscle flaps. Male Sprague-Dawley rats were randomized (n=8 per group) into 3 groups: a sham-operated control group, an I/R group (4 h of pudic epigastric artery ischemia followed by 2 h of reperfusion), and an IPC+I/R group (3 cycles of 10 min of ischemia followed by 10 min reperfusion before I/R). Intravital microscopy was used to observe leukocyte/endothelial cell interactions and quantify functional capillaries in cremaster muscles. I/R markedly increased the number of rolling, adhering, and migrating leukocytes. It was also observed that I/R significantly increased TNF- expression in these injured tissues. On the other hand, IPC prevented I/R-induced increases in leukocyte rolling, adhesion, and transmigration. Moreover, TNF- protein production and its mRNA expression were downregulated in the IPC group. Finally, I/R-induced IB- phosphorylation and NF-B (p65) nuclear translocation were both suppressed by IPC. These results indicated that IPC attenuated NF-B activation and subsequently reduced TNF- expression, which resulted in the amelioration of microcirculatory disturbances in I/R-injured cremaster muscles.  相似文献   

15.
Calf lens A-crystallin isolated by reversed-phase HPLC demonstrates a slightly more hydrophobic profile than B-crystallin. Fluorescent probes in addition to bis-ANS, like cis-parinaric acid (PA) and pyrene, show higher quantum yields or Ham ratios when bound to A-crystallin than to B-crystallin at room temperature. Bis-ANS binding to both A- and B-crystallin decreases with increase in temperature. At room temperature, the chaperone-like activity of A-crystallin is lower than that of B-crystallin whereas at higher temperatures, A-crystallin shows significantly higher protection against aggregation of substrate proteins compared to B-crystallin. Therefore, calf lens A-crystallin is more hydrophobic than B-crystallin and chaperone-like activity of -crystallin subunits is not quantitatively related to their hydrophobicity.  相似文献   

16.
The white rot basidiomycete Phanerochaete chrysosporium metabolized 1-(3,4-diethoxyphenyl)-1,3(dihydroxy)-2-(4'-methoxyphenyl)-propane (XII) in low nitrogen stationary cultures, conditions under which the ligninolytic enzyme system is expressed. 3,4-Diethoxybenzyl alcohol (IV), 1,2(dihydroxy)-1-(4-methoxyphenyl)ethane (XX) and anisyl alcohol were isolated as metabolic products indicating an initial , bond cleavage of this dimer. Exogenously added XX was rapidly converted to anisyl alcohol, indicating that XX is an intermediate in the metabolism of XII. Fungal cleavage of the , bond of 1-(3-4-diethoxyphenyl)-1-(hydroxy)-2-(4'-methoxyphenyl)ethane (XI) also occurred, indicating that a hydroxymethyl group is not a prerequisite for this reaction. P. chrysosporium also metabolized 1-(4-ethoxy-3-methoxyphenyl)-2,2(dihydroxy)-2-(4'-methoxyphenyl)propane-1-ol (XIII). The major products of the degradation of this triol included 4-ethoxy-3-methoxybenzyl alcohol (III) and 2-hydroxy-1-(4-methoxyphenyl)-1-oxoethane (XXI). The nature of the products formed indicates that this triol is also cleaved directly at the , bond. The significant difference in the nature of the products formed from the diaryl propane (XII) and the triol (XIII), however, suggests that XIII is not an intermediate in the major pathway for the degradation of XII. Metabolites were identified after comparison with chemically synthesized standards by GLC-mass spectrometry.Abbreviations GLC Gas liquid chromatography - TMSi trimethylsilyl - TLC thin layer chromatography - MS mass spectrometry  相似文献   

17.
Ornithine decarboxylase (ODC) plays an essential role in various biological functions, including cell proliferation, differentiation and cell death. However, how it prevents the cell apoptotic mechanism is still unclear. Previous studies have demonstrated that decreasing the activity of ODC by difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, causes the accumulation of intracellular reactive oxygen species (ROS) and cell arrest, thus inducing cell death. These findings might indicate how ODC exerts anti-oxidative and anti-apoptotic effects. In our study, tumor necrosis factor alpha (TNF-) induced apoptosis in HL-60 and Jurkat T cells. The kinetic studies revealed that the TNF- -induced apoptotic process included intracellular ROS generation (as early as 1 h after treatment), the activation of caspase 8 (3 h), the cleavage of Bid (3 h) and the disruption of mitochondrial membrane potential ( m) (6 h). Furthermore, ROS scavengers, such as glutathione (GSH) and catalase, maintained m and prevented apoptosis upon treatment. Putrescine and overexpression of ODC had similar effects as ROS scavengers in decreasing intracellular ROS and preventing the disruption of m and apoptosis. Inhibition of ODC by DFMO in HL-60 cells only could increase ROS generation, but did not disrupt m or induce apoptosis. However, DFMO enhanced the accumulation of ROS, disruption of m and apoptosis when cells were treated with TNF- . ODC overexpression avoided the decline of Bcl-2, prevented cytochrome c release from mitochondria and inhibited the activation of caspase 8, 9 and 3. Overexpression of Bcl-2 maintained m and prevented apoptosis, but could not reduce ROS until four hours after TNF- treatment. According to these data, we suggest that TNF- induces apoptosis mainly by a ROS-dependent, mitochondria-mediated pathway. Furthermore, ODC prevents TNF- -induced apoptosis by decreasing intracellular ROS to avoid Bcl-2 decline, maintain m, prevent cytochrome c release and deactivate the caspase cascade pathway.  相似文献   

18.
Receptor protein tyrosine phosphatase (RPTP) is transmembrane protein phosphatases, and has been proposed to be involved in the differentiation of the neuronal system. In the present study, we demonstrated the expression of RPTP mRNA in several normal human tissues. We further investigated the regulation of expression of RPTP mRNA in epithelial cells utilizing three commercially available human prostate cancer cell lines LNCaP, PC-3 and DU145. This is because these cells exhibit different levels of differentiation, defined by the expression of a tissue-specific differentiation antigen, prostatic acid phosphatase (PAcP), and their androgen sensitivity. LNCaP cells express PAcP and are androgen-sensitive cells, while PC-3 and DU145 cells do not express PAcP and are androgen-insensitive cells. Northern blot analyses revealed that, in LNCaP cells, fetal bovine serum (FBS) and 5-dihydrotestosterone (DHT) down-regulates RPTP mRNA expression, similar to the effect on PAcP. Contrarily, FBS up-regulated the RPTP mRNA level in PC-3 and DU145 cells. In LNCaP cells, sodium butyrate inhibited cell growth and up-regulated RPTP as well as PAcP mRNA expression. Although, sodium butyrate also inhibited the growth of PC-3 and DU145 cells, the level of RPTP mRNA was decreased in PC-3, while increased in DU145 cells. Thus, data taken together indicate that the expression of RPTP is apparently regulated by a similar mechanism to that of PAcP in LNCaP cells.  相似文献   

19.
    
An 1,3-fucosyltransferase was purified 3000-fold from mung bean seedlings by chromatography on DE 52 cellulose and Affigel Blue, by chromatofocusing, gelfiltration and affinity chromatography resulting in an apparently homogenous protein of about 65 kDa on SDS-PAGE. The enzyme transferred fucose from GDP-fucose to the Asn-linkedN-acetylglucosaminyl residue of an N-glycan, forming an 1,3-linkage. The enzyme acted upon N-glycopeptides and related oligosaccharides with the glycan structure GlcNAc2Man3 GlcNAc2. Fucose in 1,6-linkage to the asparagine-linked GlcNAc had no effect on the activity. No transfer to N-glycans was observed when the terminal GlcNAc residues were either absent or substituted with galactose.N-acetyllactosamine, lacto-N-biose andN-acetylchito-oligosaccharides did not function as acceptors for the 1,3-fucosyltransferase.The transferase exhibited maximal activity at pH 7.0 and a strict requirement for Mn2+ or Zn2+ ions. The enzyme's activity was moderately increased in the presence of Triton X-100. It was not affected byN-ethylmaleimide.Abbreviations 1,3-Fuc-T GDP-fucose:-N-acetylglucosamine(Fuc to Asn-linked GlcNAc)1,3-fucosyltransferase - 1,6-Fuc-T GDP-fucose:-N-acetylglucosamine(Fuc to Asn-linked GlcNAc) 1,6-fucosyltransferase - PA pyridylamino - GnGn GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4GlcNAc - GnGnF3 GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-3)GlcNAc - GnGnF6 GlcNAc1-2-Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-6)GlcNAc - GnGnF3F6 GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-3)[Fuc1-6]GlcNAc - MM Man1-6(Man1-3)Man1-4GlcNAc1-4GlcNAc - MMF3 Man1-6(Man1-3)Man1-4GlcNAc1-4(Fuc1-3)GlcNAc - MMF3F6 Man1-6(Man1-3)Man1-4GlcNAc1-4(Fuc1-3)[Fuc1-6]GlcNAc  相似文献   

20.
The parallel /-barrel domain consisting of eight parallel -sheets surrounded by eight -helices has been currently identified in crystal structures of more than 20 enzymes. This type of protein folding motif makes it possible to catalyze various biochemical reactions on a variety of substrates (i.e., it seems to be robust enough so that different enzymatic functionalities could be designed on it). In spite of many efforts aimed at elucidation of evolutionary history of the present-day /-barrels, a challenging question remains unanswered: How has the parallel /-barrel fold arisen? Although the complete sequence comparison of all /-barrel amino acid sequences is not yet available, several sequence similarities have been revealed by using the highly conserved regions of -amylase as structural templates. Since many starch-processing enzymes adopt the parallel /-barrel structure these enzymes might be useful in the search for evolutionary relationships of the whole parallel eight-folded /-barrel enzyme family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号