首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The type III secretion apparatus (T3SA) is a multi‐protein complex central to the virulence of many Gram‐negative pathogens. Currently, the mechanisms controlling the hierarchical addressing of needle subunits, translocators and effectors to the T3SA are still poorly understood. In Shigella, MxiC is known to sequester effectors within the cytoplasm prior to receiving the activation signal from the needle. However, molecules involved in linking the needle and MxiC are unknown. Here, we demonstrate a molecular interaction between MxiC and the predicted inner‐rod component MxiI suggesting that this complex plugs the T3SA entry gate. Our results suggest that MxiI–MxiC complex dissociation facilitates the switch in secretion from translocators to effectors. We identified MxiCF206S variant, unable to interact with MxiI, which exhibits a constitutive secretion phenotype although it remains responsive to induction. Moreover, we identified the mxiIQ67A mutant that only secretes translocators, a phenotype that was suppressed by coexpression of the MxiCF206S variant. We demonstrated the interaction between MxiI and MxiC homologues in Yersinia and Salmonella. Lastly, we identified an interaction between MxiC and chaperone IpgC which contributes to understanding how translocators secretion is regulated. In summary, this study suggests the existence of a widely conserved T3S mechanism that regulates effectors secretion.  相似文献   

2.
3.
4.
Type III secretion systems (T3SSs) are key determinants of virulence in many Gram-negative bacteria, including animal and plant pathogens. They inject 'effector' proteins through a 'needle' protruding from the bacterial surface directly into eukaryotic cells after assembly of a 'translocator' pore in the host plasma membrane. Secretion is a tightly regulated process, which is blocked until physical contact with a host cell takes place. Host cell sensing occurs through a distal needle 'tip complex' and translocators are secreted before effectors. MxiC, a Shigella T3SS substrate, prevents premature effector secretion. Here, we examine how the different parts of T3SSs work together to allow orderly secretion. We show that T3SS assembly and needle tip composition are not altered in an mxiC mutant. We find that MxiC not only represses effector secretion but that it is also required for translocator release. We provide genetic evidence that MxiC acts downstream of the tip complex and then the needle during secretion activation. Finally, we show that the needle controls MxiC release. Therefore, for the first time, our data allow us to propose a model of secretion activation that goes from the tip complex to cytoplasmic MxiC via the needle.  相似文献   

5.
Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram‐negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C‐terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation.  相似文献   

6.
7.
Gram‐negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti‐infective agents.  相似文献   

8.
Type III secretion apparatus (T3SA) are complex nanomachines that insert a translocation pore into the host cell membrane through which effector proteins are injected into the cytosol. In Shigella, the pore is inserted by a needle tip complex that also controls secretion. IpaD is the key protein that rules the composition of the tip complex before and upon cell contact or Congo red (CR) induction. However, how IpaD is involved in secretion control and translocon insertion remains not fully understood. Here, we report the phenotypic analysis of 20 10‐amino acids deletion variants all along the coiled‐coil and the central domains of IpaD (residues 131–332). Our results highlight three classes of T3S phenotype; (i) wild‐type secretion, (ii) constitutive secretion of all classes of effectors, and (iii) constitutive secretion of translocators and early effectors, but not of late effectors. Our data also suggest that the composition of the tip complex defines both the T3SA inducibility state and late effectors secretion. Finally, we shed light on a new aspect regarding the contact of the needle tip with cell membrane by uncoupling the Shigella abilities to escape macrophage vacuole, and to insert the translocation pore or to invade non‐phagocytic cells.  相似文献   

9.
The Shigella type III secretion machinery is responsible for delivering to host cells the set of effectors required for invasion. The type III secretion complex comprises a needle composed of MxiH and MxiI and a basal body made up of MxiD, MxiG, and MxiJ. In S. flexneri, the needle length has a narrow range, with a mean of approximately 45 nm, suggesting that it is strictly regulated. Here we show that Spa32, encoded by one of the spa genes, is an essential protein translocated via the type III secretion system and is involved in the control of needle length as well as type III secretion activity. When the spa32 gene was mutated, the type III secretion complexes possessed needles of various lengths, ranging from 40 to 1,150 nm. Upon introduction of a cloned spa32 into the spa32 mutant, the bacteria produced needles of wild-type length. The spa32 mutant overexpressing MxiH produced extremely long (>5 microm) needles. Spa32 was secreted into the medium via the type III secretion system, but secretion did not depend on activation of the system. The spa32 mutant and the mutant overexpressing MxiH did not secrete effectors such as Ipa proteins into the medium or invade HeLa cells. Upon introduction of Salmonella invJ, encoding InvJ, which has 15.4% amino acid identity with Spa32, into the spa32 mutant, the bacteria produced type III needles of wild-type length and efficiently entered HeLa cells. These findings suggest that Spa32 is an essential secreted protein for a functional type III secretion system in Shigella spp. and is involved in the control of needle length. Furthermore, its function is interchangeable with that of Salmonella InvJ.  相似文献   

10.
Bacteria from the genus Yersinia deliver a number of effectors into host cells via type III secretion (T3S). Injected Yop effectors interfere and prevent pro-inflammatory warning signals by hijacking the host's intracellular machinery. While macrophages infected by wild-type Yersinia enterocolitica did not release mature IL-1beta, macrophages infected by Y. enterocolitica deprived of all effectors released mature IL-1beta. Surprisingly, macrophages infected by Y. enterocolitica deficient for secretion of all T3S proteins, including effectors and translocators, did not release mature IL-1beta. Using different genetic constructs, we show that insertion of T3S translocation pores trigger activation of caspase-1, maturation of proIL-1beta and release of mature IL-1beta, which occurs independently of cell osmotic lysis. These data show that T3S translocation is intrinsically a pro-inflammatory phenomenon. However, in the case of Yersinia, this effect is neutralized by the action of effectors.  相似文献   

11.
Type III secretion (T3S), a protein export pathway common to Gram‐negative pathogens, comprises a trans‐envelope syringe, the injectisome, with a cytoplasm‐facing translocase channel. Exported substrates are chaperone‐delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first “translocators”, then “effectors”. We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane‐associated pseudo‐effector SepL and its chaperone SepD. This renders SepL a high‐affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD‐coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.  相似文献   

12.
Like many Gram-negative pathogens, Shigella rely on a type three secretion system (T3SS) for injection of effector proteins directly into eukaryotic host cells to initiate and sustain infection. Protein secretion through the needle-like type three secretion apparatus (T3SA) requires ATP hydrolysis by the T3SS ATPase Spa47, making it a likely target for in vivo regulation of T3SS activity and an attractive target for small molecule therapeutics against shigellosis. Here, we developed a model of an activated Spa47 homo-hexamer, identifying two distinct regions at each protomer interface that we hypothesized to provide intermolecular interactions supporting Spa47 oligomerization and enzymatic activation. Mutational analysis and a series of high-resolution crystal structures confirm the importance of these residues, as many of the engineered mutants are unable to form oligomers and efficiently hydrolyze ATP in vitro. Furthermore, in vivo evaluation of Shigella virulence phenotype uncovered a strong correlation between T3SS effector protein secretion, host cell membrane disruption, and cellular invasion by the tested mutant strains, suggesting that perturbation of the identified interfacial residues/interactions influences Spa47 activity through preventing oligomer formation, which in turn regulates Shigella virulence. The most impactful mutations are observed within the conserved Site 2 interface where the native residues support oligomerization and likely contribute to a complex hydrogen bonding network that organizes the active site and supports catalysis. The critical reliance on these conserved residues suggests that aspects of T3SS regulation may also be conserved, providing promise for the development of a cross-species therapeutic that broadly targets T3SS ATPase oligomerization and activation.  相似文献   

13.
Type III secretion systems (T3SSs) secrete needle components, pore-forming translocators, and the translocated effectors. In part, effector recognition by a T3SS involves their N-terminal amino acids and their 5' mRNA. To investigate whether similar molecular constraints influence translocator secretion, we scrutinized this region within YopD from Yersinia pseudotuberculosis. Mutations in the 5' end of yopD that resulted in specific disruption of the mRNA sequence did not affect YopD secretion. On the other hand, a few mutations affecting the protein sequence reduced secretion. Translational reporter fusions identified the first five codons as a minimal N-terminal secretion signal and also indicated that the YopD N terminus might be important for yopD translation control. Hybrid proteins in which the N terminus of YopD was exchanged with the equivalent region of the YopE effector or the YopB translocator were also constructed. While the in vitro secretion profile was unaltered, these modified bacteria were all compromised with respect to T3SS activity in the presence of immune cells. Thus, the YopD N terminus does harbor a secretion signal that may also incorporate mechanisms of yopD translation control. This signal tolerates a high degree of variation while still maintaining secretion competence suggestive of inherent structural peculiarities that make it distinct from secretion signals of other T3SS substrates.  相似文献   

14.
Type III secretion systems (T3SS) are present in many pathogenic gram-negative bacteria and mediate the translocation of bacterial effector proteins into host cells. Here, we report the phenotypic characterization of S. flexneri ipgB1 and ipgB2 mutants, in which the genes encoding the IpgB1 and IpgB2 effectors have been inactivated, either independently or simultaneously. Like IpgB1, we found that IpgB2 is secreted by the T3SS and its secretion requires the Spa15 chaperone. Upon infection of semi-confluent HeLa cells, the ipgB2 mutant exhibited the same invasive capacity as the wild-type strain and the ipgB1 mutant was 50% less invasive. Upon infection of polarised Caco2-cells, the ipgB2 mutant did not show a significant defect in invasion and the ipgB1 mutant was slightly more invasive than the wild-type strain. Entry of the ipgB1 ipgB2 mutant in polarized cells was reduced by 70% compared to the wild-type strain. Upon infection of the cornea in Guinea pigs, the ipgB2 mutant exhibited a wild-type phenotype, the ipgB1 mutant was hypervirulent and elicited a more pronounced proinflammatory response, while the ipgB1 ipgB2 mutant was highly attenuated. The attenuated phenotype of the ipgB1 ipgB2 mutant was confirmed using a murine pulmonary model of infection and histopathology and immunochemistry studies.  相似文献   

15.
Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ∼20 individual protein components that form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.  相似文献   

16.
Many Gram-negative bacteria use a type III secretion (T3S) system to directly inject effector molecules into eucaryotic cells in order to establish a symbiotic or pathogenic relationship with their host. The translocation of many T3S proteins requires specialized chaperones from the bacterial cytosol. SycD belongs to a class of T3S chaperones that assists the secretion of pore-forming translocators and, specifically chaperones the translocators YopB and YopD from enteropathogenic Yersinia enterocolitica. In addition, SycD is involved in the regulation of virulence factor biosynthesis and secretion. In this study, we present two crystal structures of Y. enterocolitica SycD at 1.95 and 2.6 Å resolution, the first experimental structures of a T3S class II chaperone specific for translocators. The fold of SycD is entirely α-helical and reveals three tetratricopeptide repeat-like motifs that had been predicted from amino acid sequence. In both structures, SycD forms dimers utilizing residues from the first tetratricopeptide repeat motif. Using site-directed mutagenesis and size exclusion chromatography, we verified that SycD forms head-to-head homodimers in solution. Although in both structures, dimerization largely depends on the same residues, the two assemblies represent alternative dimers that exhibit different monomer orientations and overall shape. In these two distinct head-to-head dimers, both the concave and the convex surface of each monomer are accessible for interactions with the SycD binding partners YopB and YopD. A SycD variant carrying two point mutations in the dimerization interface is properly folded but defective in dimerization. Expression of this stable SycD monomer in Yersinia does not rescue the phenotype of a sycD null mutant, suggesting a physiological relevance of the dimerization interface.  相似文献   

17.
Shigella flexneri is a Gram-negative enteric pathogen that is the predominant cause of bacillary dysentery. Shigella uses a type III secretion system to deliver effector proteins that alter normal target cell functions to promote pathogen invasion. The type III secretion apparatus (T3SA) consists of a basal body, an extracellular needle, and a tip complex that is responsible for delivering effectors into the host cell cytoplasm. IpaD [Ipa (invasion plasmid antigen)] is the first protein to localize to the T3SA needle tip, where it prevents premature effector secretion and serves as an environmental sensor for triggering recruitment of the translocator protein IpaB to the needle tip. Thus, IpaD would be expected to form a stable structure whose overall architecture supports its functions. It is not immediately obvious from the published IpaD crystal structure (Protein Data Bank ID 2j0o) how a multimer of IpaD would be incorporated at the tip of the first static T3SA intermediate, nor what its functional role would be in building a mature T3SA. Here, we produce three-dimensional reconstructions from transmission electron microscopy images of IpaD localized at the Shigella T3SA needle tip for comparison to needle tips from a Shigella ipaD-null mutant. The results demonstrate that IpaD resides as a homopentamer at the needle tip of the T3SA. Furthermore, comparison to tips assembled from the distal domain IpaD(Δ192-267) mutation shows that IpaD adopts an elongated conformation that facilitates its ability to control type III secretion and stepwise assembly of the T3SA needle tip complex.  相似文献   

18.
19.
The obligate intracellular pathogen Chlamydia trachomatis expresses a type III secretion system (T3SS) which has the potential to contribute significantly to pathogenesis. Based on a demonstrated role of type III secretion (T3S)-specific chaperones in the secretion of antihost proteins by gram-negative pathogens, we initiated a study of selected putative Chlamydia T3S chaperones in an effort to gain mechanistic insight into the Chlamydia T3SS and to potentially identify Chlamydia-specific secreted products. C. trachomatis Scc2 and Scc3 are homologous to SycD of Yersinia spp. Functional studies of the heterologous Yersinia T3SS indicated that although neither Scc2 nor Scc3 was able to fully complement a sycD null mutant, both have SycD-like characteristics. Both were able to associate with the translocator protein YopD, and Scc3 expression restored limited secretion of YopD in in vitro studies of T3S. CopB (CT578) and CopB2 (CT861) are encoded adjacent to scc2 and scc3, respectively, and have structural similarities with the YopB family of T3S translocators. Either Scc2 or Scc3 coprecipitates with CopB from C. trachomatis extracts. Expression of CopB or CopB2 in Yersinia resulted in their type III-dependent secretion, and localization studies with C. trachomatis-infected cells indicated that both were secreted by Chlamydia.  相似文献   

20.
The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号