首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用扫描电镜(SEM)和光镜(LM)对臭椿花序及花器官的分化和发育进行了初步研究,表明:1)臭椿花器官分化于当年的4月初,为圆锥花序;2)分化顺序为花萼原基、花冠原基、雄蕊原基和雌蕊原基。5个萼片原基的发生不同步,并且呈螺旋状发生;5个花瓣原基几乎同步发生且其生长要比雄蕊原基缓慢;雄蕊10枚,两轮排列,每轮5个原基的分化基本是同步的;雌蕊5,其分化速度较快;3)在两性花植株中,5个心皮顶端粘合形成柱头和花柱,而在雄株中,5个心皮退化,只有雄蕊原基分化出花药和花丝。本研究着重观察了臭椿中雄花及两性花发育的过程中两性花向单性花的转变。结果表明,臭椿两性花及单性花的形成在花器官的各原基上是一致的(尽管时间上有差异),雌雄蕊原基同时出现在每一个花器官分化过程中,但是,可育性结构部分的形成取决于其原基是否分化成所应有的结构:雄蕊原基分化形成花药与花丝,雌蕊原基分化形成花柱、柱头和子房。臭椿单性花的形成是由于两性花中雌蕊原基的退化所造成,其机理有待于进一步研究。  相似文献   

2.
黄瓜(Cucumis sativus L)为重要的经济作物,雌雄同株异花,是研究植物性别分化的经典材料。人们对黄瓜性别分化进行了广泛的研究。Astmon和Galun,任吉君和王艳对黄瓜性别分化的形态特征和器官发生进行了初步研究,表明黄瓜单性花分化和发育过程中经历了无性期、两性期和单性期,最  相似文献   

3.
丝瓜雄花和雌花发育特点的研究   总被引:3,自引:0,他引:3  
丝瓜为单性花,雌雄同株植物。雄花发育过程中,不出现雌蕊原基,即无“两性期”。雄花发育早期,分化出五个雄蕊原基,以后发育成五个分离的雄蕊。雌花发育早期,有雄蕊原基的形成,即具“两性期”。以后随着雌花的发育,雄蕊逐渐退化。雌蕊具三心皮下位子房,发育早期,子房基部的胎座呈中轴胎座状,向上逐渐过渡转化形成侧膜胎座。  相似文献   

4.
基部被子植物金粟兰科(Chloranthaceae)的单性花或两性花结构十分简单,雪香兰(Hedyosmum orientale)花单性、雌雄异株,花的形态及结构与其它属物种具有显著的差异,对于研究被子植物花特别是花被的起源和系统进化具有重要意义。该研究采用电子显微镜和光学显微镜观察了雪香兰单性花的器官发生及发育过程。结果表明,雌、雄花均为顶生和腋生,多个小花呈聚伞圆锥状排列。雄花外侧是苞片,每朵雄花上着生150–200个雄蕊,花轴基部着生少数退化的叶原体。苞片原基及其腋生的花原基最初呈圆丘状,随后伸长。在雄花发育过程中,苞片原基比雄蕊原基生长快,雄花原基纵向伸长,叶原体原基在基部发生,雄蕊原基自下而上发生。每2朵雌花底部合生形成小聚伞花序,每朵雌花被一苞叶包裹,由单心皮和三棱型子房构成,外覆三裂叶状花被。在雌花发育过程中,雌花原基比苞片原基生长快,花被原基首先于花顶端发生,随后花顶端中心凹陷,进一步发育成具有单心皮的子房原基。雪香兰的单性花发育不经过两性同体阶段,花分生组织只起始雄蕊器官或雌蕊器官的发育。研究结果支持雪香兰单性花是原始性状的观点,雄花叶原体与雌花三裂叶状花被同源,可能是花被(萼片与花瓣)的起源。  相似文献   

5.
花叶芋(天南星科)的花器官发生   总被引:1,自引:0,他引:1  
利用扫描电镜首次观察了天南星科花叶芋(Colocasia bicolor) 的花器官发生过程。花叶芋的肉穗花序由无花被的单性花构成, 雌花发生于花序基部, 雄花发生于花序上部, 中性花位于花序中间部位。雄花: 3 或4 个初生雄蕊原基轮状发生, 随后每个初生原基一分为二, 形成6或8个次生原基; 一部分次生原基在其后的发育过程中融合, 形成5 或7 枚雄蕊; 雄花发育过程中未见雌性结构的分化; 花药的分化先于花丝; 雄蕊合生成雄蕊柱。雌花: 合生心皮, 3或4个心皮原基轮状发生, 未见雄性结构的分化。中性花来源于雌雄花序过渡带上, 属于雄蕊原基的滞后发育以及发育成熟过程中的退化; 与彩叶芋属(Caladium)不同, 此过渡区未见畸形两性花。初生雄蕊原基二裂产生次生原基的次生现象在目前天南星科花器官发生中显得比较特殊, 同时初步探讨了次生原基的融合方式。  相似文献   

6.
栝楼不同性别花芽分化形态解剖特征观察   总被引:1,自引:0,他引:1  
采用体视显微镜、石蜡切片和树脂切片技术对栝楼(Trichosanthes kirilowii Maxim.)不同性别花芽分化发育时期的外部形态和内部解剖结构进行了观察。结果显示,栝楼花为雌雄异株,仅有雌花、雄花两种性别分化,且雄花的发育速度明显快于雌花的发育速度。栝楼雌雄花芽长0.2 mm左右已完成性别分化;栝楼雄花为单性花,分化过程可分为6个时期,整个发育过程仅见雄蕊原基的分化及生长。栝楼雌花为"两性花",分化过程可分为7个时期,存在雌蕊和雄蕊共同发育阶段,后期雄蕊发育败退。本研究明确了不同性别栝楼花芽发育发生的各个阶段、形态变化特点、外部形态变化特征以及雌雄花芽的分化差异,建立了雌雄花芽内部结构分化与外部形态之间相关性,为栝楼早期幼苗鉴定及性别分化研究提供了一定的参考。  相似文献   

7.
山鸡椒雄花花芽发育形态解剖特征观察   总被引:1,自引:0,他引:1       下载免费PDF全文
采用体视显微镜、扫描电镜和石蜡切片技术对山鸡椒(Litsea cubeba(Lour.) Pers.)雄花花芽分化发育的外部形态和内部解剖结构进行了观察研究。结果显示:(1)山鸡椒雄花花芽分化发生可分为5个时期,即未分化期、花序原基分化期、苞片原基分化期、花原基分化期和花器官分化期,其中花器官分化期又可细分为花被原基分化期、雄蕊原基分化期和雌蕊原基分化期;各相邻分化时期存在一定重叠现象;花期从翌年1月上旬至3月下旬。(2)雄花成熟结构中具有独特的雄蕊蜜腺,蜜腺绿色且形态不规则,着生于内轮雄蕊基部,分布于花丝两侧,夹在内外轮雄蕊的花丝之间,与内轮花丝紧密相连。(3)雄蕊花药四室,花药壁发育属于基本型;腺质绒毡层;小孢子母细胞减数分裂过程中胞质分裂属于连续型;成熟花粉为2-细胞花粉粒;成熟花粉粒外壁刺突较多,刺突基部膨大,外壁露出部分粗糙,无薄壁区,有少数小穿孔。(4)山鸡椒雄花中绝大多数雌蕊发育至腹缝线卷合形成子房室时停止,柱头发育不良或者败育,花柱缩短或缺失,不能受精,直到开花结束,即发生退化。本研究明确了山鸡椒雄花花芽发育发生各个阶段时间、形态变化特点及外部形态变化特征,山鸡椒小孢子发生、雄配子体发育至散粉期变化特点和规律以及雄花中退化雌蕊发育的进程,可为山鸡椒优良品种选育、调控花期和提高结实率提供一定的参考。  相似文献   

8.
黄瓜性型分化的分子机制   总被引:2,自引:0,他引:2  
梁永宏  李广林  郭韬  魏强 《生命科学》2010,(11):1177-1183
黄瓜(Cucumis sativus)是雌雄异花植物性型分化研究的重要模式植物,近年来虽然其性型分化的分子机制研究取得了一定的成果,但其性型分化的调控机制尚未完全阐明。该文综合花器官发育基因、性别决定基因、内源激素、环境因子、性型分化假说,在分子水平构建了黄瓜性型分化的表达调控网络。同时对激素和性别决定基因协控的黄瓜单性花器官凋亡机制进行了阐述,并就miRNA在黄瓜性型分化调控中的作用进行了探讨。  相似文献   

9.
掌叶木的花器官发生及其系统学意义   总被引:7,自引:0,他引:7  
利用扫描电子显微镜和光学显微镜观察了掌叶木的花器官发生过程。观察结果表明: 花序原基最先发生, 然后形成两个大小不一的花原基; 萼片原基的发生不同步, 螺旋状向心发生; 4-5枚花瓣原基以接近轮状方式近同时发生; 不存在花瓣-雄蕊复合原基; 7-8枚雄蕊原基为近同时发生, 其生长较花瓣原基快; 心皮原基最后发生, 3枚心皮原基为同时发生。花为单性花。在雌花中, 子房膨大而雄蕊退化。在雄花中, 雄蕊正常发育, 子房退化。讨论了掌叶木花器官发生和发育的系统学意义。  相似文献   

10.
黄瓜离体子叶节花芽和营养芽分化中CFL基因的表达   总被引:1,自引:0,他引:1  
CFL基因是从黄瓜中克隆到的拟南芥LEAFY(LFY)同源基因.以离体黄瓜子叶培养物成花为实验体系,利用mRNA原位杂交技术对CFL基因在花芽和营养芽分化过程中的时空表达进行了分析.结果如下:在花芽分化过程中,CFL基因在花原基形成、花器官原基分化及各轮花器官形成之初强表达,在花器官形成以后表达减弱或不表达;在营养芽分化过程中,CFL基因在分生组织、叶原基和幼叶中有明显表达,在成熟组织中不表达.结果说明CFL基因的表达在黄瓜子叶节花芽和营养芽分化中原基的分化形成是必需的.结果提示CFL基因可能参与细胞分裂调控和启动、营养性分生组织向花分生组织转变等过程.  相似文献   

11.
The development of staminate and pistillate flowers in the dioecious tree species Pistacia vera L. (Anacardiaceae) was studied by scanning electron microscopy with the objective of determining organogenetic patterns and phenology of floral differentiation. Flower primordia are initiated similarly in trees of both sexes. Stamen and carpel primordia are initiated in both male and female flowers, and the phenology of organ initiation is essentially identical for flowers of both sexes. Vestigial stamen primordia arise at the flanks of pistillate flower apices at the same time functional stamens are initiated in the staminate flowers. Similarly, a vestigial carpel is initiated in staminate flowers at the same time the primary, functional carpel is initiated in pistillate flower primordia. Differences between the two sexes become apparent early in development as, in both cases, development of organs of the opposite sex becomes arrested at the primordial stage. Male flowers produce between four and six mature functional stamens and female flowers produce a gynoecium with one functional and two sterile carpels.  相似文献   

12.
Gu HT  Wang DH  Li X  He CX  Xu ZH  Bai SN 《The New phytologist》2011,192(3):590-600
? Production of unisexual flowers is an important mechanism that promotes cross-pollination in angiosperms. We previously identified primordial anther-specific DNA damage and organ-specific ethylene perception responsible for the arrest of stamen development in female flowers, but little is known about how the two processes are linked. ? To identify potential links between the two processes, we performed suppression subtractive hybridization (SSH) on cucumber (Cucumis sativus L.) stamens of male and female flowers at stage 6, with stamens at stage 5 of bisexual flowers as a control. ? Among the differentially expressed genes, we identified an expressed sequence tag (EST) encoding a cucumber homolog to an Arabidopsis calcium-dependent nuclease (CAN), designated CsCaN. Full-length CsCaN cDNA and the respective genomic DNA sequence were cloned and characterized. The CsCaN protein exhibited calcium-dependent nuclease activity. CsCaN showed ubiquitous expression; however, increased gene expression was detected in the stamens of stage 6 female flowers compared with male flowers. As expected, CsCaN expression was ethylene inducible. It was of great interest that CsCaN was post-translationally modified. ? This study demonstrated that CsCaN is a novel cucumber nuclease gene, whose DNase activity is regulated at multiple levels, and which could be involved in the primordial anther-specific DNA damage of developing female cucumber flowers.  相似文献   

13.
Ethylene plays a key role in sex determination of cucumber flowers. Gynoecious cucumber shoots produce more ethylene than monoecious shoots. Because monoecious cucumbers produce both male and female flower buds in the shoot apex and because the relative proportions of male and female flowers vary due to growing conditions, the question arises as to whether the regulation of ethylene biosynthesis in each flower bud determines the sex of the flower. Therefore, the expression of a 1-aminocyclopropane-1-carboxylic acid synthase gene, CS-ACS2, was examined in cucumber flower buds at different stages of development. The results revealed that CS-ACS2 mRNA began to accumulate just beneath the pistil primordia of flower buds at the bisexual stage, but was not detected prior to the formation of the pistil primordia. In buds determined to develop as female flowers, CS-ACS2 mRNA continued to accumulate in the central region of the developing ovary where ovules and placenta form. In gynoecious cucumber plants that produce only female flowers, accumulation of CS-ACS2 mRNA was detected in all flower buds at the bisexual stage and at later developmental stages. In monoecious cucumber, flower buds situated on some nodes accumulated CS-ACS2 mRNA, but others did not. The proportion of male and female flowers in monoecious cucumbers varied depending on the growth conditions, but was correlated with changes in accumulation of CS-ACS2 mRNA in flower buds. These results demonstrate that CS-ACS2-mediated biosynthesis of ethylene in individual flower buds is associated with the differentiation and development of female flowers.  相似文献   

14.
黄瓜花性别分化与内源多胺的关系   总被引:15,自引:0,他引:15  
研究了黄瓜雌、雄花几个主要发育时期和性别逆转过程中内源多胺的变化。结果表明 ,雄花在不同发育时期 ,内源腐胺含量均高于雌花 ,腐胺含量的显著升高伴随着花粉粒的形成 ,高腐胺含量是雄花发育的特征。雌花在大孢子母细胞时期以后直到雌花发育成熟 ,其内源尸胺含量均高于雄花 ,高尸胺含量可能有利于雌花的发育。高水平的内源多胺、精胺和亚精胺可能有利于雌花大孢子母细胞的形成。亚精胺和腐胺含量随着大小孢子四分体形成和大孢子核的连续分裂而分别表现下降和上升。雌性系黄瓜经硝酸银诱导雄花处理后 ,茎尖内源亚精胺含量下降 ,腐胺含量上升 ,从而诱导雄花形成 ;雄性系黄瓜经乙烯利诱导雌花处理后 ,茎尖内源亚精胺含量上升 ,腐胺含量下降 ,从而诱导雌花形成  相似文献   

15.
Summary Using an immunological method we assayed the levels of auxin, abscisic acid and three cytokinins (transzeatin riboside, dihydrozeatin riboside, isopentenyladenosine) in flowers of female and male plants of Asparagus officinalis L. at different stages of development. The largest differences between the sexes were found for auxin: auxin content was found to be about three times higher in young male flowers than in female flowers at a corresponding developmental stage. In order to identify some of the biochemical markers linked to sex differentiation, we also examined peroxidase isoenzyme patterns during flower development. We found five flower-specific peroxidase bands, three of which appear to be localized in the anthers. In young flowers still sexually undifferentiated in their morphology these bands are present in both sexes. They subsequently rapidly disappear in the female flower (approximately at the same time as when anther development is blocked), while they persist for a much longer time in the male. The temporary presence of these peroxidase isoenzymes in female young flowers together with the large difference in auxin content indicate that the stage of the young flower is a crucial moment in the process of sex determination.  相似文献   

16.
Sex determination is the most widely studied subject in cucumber. The sex of cucumber plants can be monoecious, hermaphrodite, gynoecious, androecious, or andromonoecious. Besides environmental factors, three major genes, F/f, M/m, and A/a mainly govern the sex types in cucumber. Regardless of their sex all floral buds are bisexual at the early bud stage. A stage specific arrest of either stamen or carpel leads to unisexual flower development. The possible downstream product of the interaction of the sex determining genes that may directly allow the growth or selectively arrest stamen or pistil is not yet identified. Therefore, in the current study, we performed suppression subtractive hybridization using floral buds from nearly isogenic gynoecious and hermaphrodite cucumber plants and identified for the first time a cDNA homologous to nucleotide sugar epimerase. The expression level of the isolated putative nucleotide sugar epimerase is weak in female floral buds but strong in bisexual and male flowers. The weak level of the putative nucleotide sugar epimerase may be an indication for its improper functioning, which may influence stamen development in cucumber plants.  相似文献   

17.
The striking diversity in the expression pattern of the stress-related anionic peroxidase was observed during development of female cucumber flower. While the isoenzyme Prx3 was accumulated constitutively in the course of flower development, the expression patterns of other two isoenzymes (Prx1 and Prx2) were restricted to the period after flower opening. The virus infection was simulated by careful opening of the intact female flower buds 3 d before anthesis followed by exposition to the glasshouse environment for 3 d. The results obtained in this experiment revealed a marked accumulation of the isoenzyme Prx1 and Prx2 at anthesis. Under normal flower development, the pistils did not accumulate these isoenzymes at this stage. In contrast, the pattern of expression of Prx3 as well as of the pistil-specific peroxidase isoenzyme remained unchanged, confirming a constitutive type of expression. Beside the pistil, a 3-d exposition of the stripped flowers resulted in a marked accumulation of Prx1 and Prx2 isoenzymes also in both adjacent flower organs - the ovary and the pedicel. At the same time of the normal development of female flower these organs did not accumulate these isoenzymes.  相似文献   

18.
Kiwifruit (Actinidia deliciosa) is a dioecious vine whose staminate and pistillate flowers nonetheless develop non-functional reproductive structures of the ompposite sex. Ubiquitin is a small, highly conserved protein found in all eucaryotes: a covalent ATP-dependent attachment of ubiquitin marks proteins for degradation. In the present paper, we used immunoblotting to investigate the presence of free ubiquitin and ubiquitin conjugates during pollen development in male (androfertile) and in female (androsterile) genotypes of kiwifruit. In the male, several high molecular mass protein conjugates were present throughout development. On the contrary, such a pattern characterized only early stages of pollen from the female genotype, where conjugates progressively disamppeared, until they were detectable only in trace amounts at anthesis. The highest content of conjugates in the male genotype was observed when microspores were ampproaching the first mitosis. Free ubiquitin increased continuously during development of the male microgametophyte so that mature pollen contained considerable amounts of the ubiquitin monomer at the time of its release from the anther. By contrast, only low levels were detectable in the degenerating microspores in the pistillate flowers. In vitro experiments using labeled ubiquitin indicated that early-uninucleate microspores of the female genotype had a much higher conjugation rate than those of the male genotype at the same stage. However, after feeding α-lactalbumin as exogenous substrate, the rate of ubiquitin conjugation strongly increased and was quite similar in both sexes. Nuclear features of pollen development in both genotypes are also described. The nucleus progressively degenerated in the microspores of the pistillate flowers starting from the early-uninucleate stage, in parallel with the progressive decrease in ubiquitin content and activity. At anthesis, the microspores in the pistillate flowers either had no nucleus or showed only traces of chromatin. Thus, the ubiquitin system seems to play an important role in protein turnover occurring during the normal developmental pathway of the kiwifruit microgametophyte, while it was mainly involved in regressive events related to microspore degeneration in the female genotype.  相似文献   

19.
Summary As a first approach in investigating the genetical bases of sexual dimorphism in the dioecious plant Asparagus offcinalis L. at the molecular level, we have determined DNA content per cell, DNA sequence complexity and mRNA activities in both developing and mature male and female flowers of Asparagus. 2C DNA content (around 3.9 pg) was independent of sex and rather low when compared to other Liliiflorae; sequence complexity, however, showed a high proportion of repeated sequences. Polyadenylated mRNA from male and female flowers at young and mature stages of development were assayed by in vitro translation in the presence of [35S]methionine, and the synthesized proteins were analysed by two-dimensional gel electrophoresis. Results have shown that there are no appreciable differences in polypeptide patterns from male and female flowers at a young stage of development, while specific sequences of mRNA are produced only very late during the development, most likely linked to the appearance of mature pollen grains and mature megagametophy tes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号