首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthetic approach to the structure-function relationship of lapemis toxin has been very useful in clarifying the important binding regions. To identify the neurotoxic binding domain(s) of lapemis toxin, several peptides were synthesized using the 9-fluorenylmethoxycarbonyl protocols. These peptides were based on the sequence of lapemis toxin, a 60-amino-acid, short-chain postsynaptic neurotoxin found in sea snake (Lapemis hardwickii) venom. The peptides were purified using high-performance liquid chromatography and sequenced to verify the correct synthesis, isolation, and purity. The synthetic peptide names and single letter sequences were Peptide A1 (15 mer) CCNQQSSQPKTTTNC Peptide B1 (18 mer) CYKKTWSDHRGTRIERGC Peptide B2 (16 mer) YKKTWSDHRGTRIERG Peptide C1 (12 mer) CPQVKPGIKLEC Peptide NS (20 mer) EACDFGHIKLMNPQRSTVWY. The peptide NS (nonsense peptide) sequence was arbitrarily determined and used as a control peptide. Biological activities of the synthetic peptides were determined by in vivo as well as by in vitro assay methods. For the in vivo assay, lethality was determined by intravenous injection in mice (Swiss Webster). For the in vitro assay, peptide binding to the Torpedo californica nicotinic acetylcholine receptor was determined. The peptides were found to be nontoxic at approximately 114 times the known LD50 of lapemis toxin. Binding studies with 125I-radiolabeled lapemis toxin and tyrosine-containing peptides indicated that lapemis toxin and peptide B1 bound the receptor, while the other peptides had no detectable binding. The central loop domain of lapemis toxin (peptide B1) plays a dominate role in the toxin's binding ability to the receptor. These results and the hydrophilicity analysis predict peptide B1 may serve as an antagonist or antigen to neutralize the neurotoxin effects in vivo.  相似文献   

2.
Search for structural variants of three globin chains (x, y, z), synthesized only during mouse embryonic hematopoiesis, was carried out by electrophoretic analysis of blood from 12-day embryos, all with C57BL/6 mothers, and fathers from 115 inbred stocks selected for their diverse genetic origins. Structure of the -chains of adult hemoglobins differed among the tested strains, with 57 carrying the Hbb sallele, 56 the Hbb dallele, and two the Hbb pallele. The search revealed no x- or z-chain variants but confirmed and extended knowledge of a previously described y-chain variant. Blood of all embryos sired by males from the 57 Hbb sstrains contained only y1-chains, while blood of all embryos sired by Hbb dor Hbb pmales contained y2-chains as well as the y1-chains inherited from their C57 BL/6 mother. The locus controlling structure of the y-chain of mouse embryonic hemoglobins is thus extremely closely linked to the locus controlling structure of adult hemoglobin -chain, with maximum possible recombination frequency less than 0.019.This work was supported in part by Grants CA-01074 from the National Cancer Institute, USPHS, and GM 18684 from the National Institute of General Medical Sciences, in part by Grant ACS-VC58 from The American Cancer Society, in part by grants to the Jackson Laboratory from the Bushrod H. Campbell and Adah F. Hall Charity Fund and the Robert Sterling Clark Foundation, and in part by the Jackson Laboratory Endowment Fund. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

3.
For several decades, the standard model for high density lipoprotein (HDL) particles reconstituted from apolipoprotein A-I (apoA-I) and phospholipid (apoA-I/HDL) has been a discoidal particle ∼100 Å in diameter and the thickness of a phospholipid bilayer. Recently, Wu et al. (Wu, Z., Gogonea, V., Lee, X., Wagner, M. A., Li, X. M., Huang, Y., Undurti, A., May, R. P., Haertlein, M., Moulin, M., Gutsche, I., Zaccai, G., Didonato, J. A., and Hazen, S. L. (2009) J. Biol. Chem. 284, 36605–36619) used small angle neutron scattering to develop a new model they termed double superhelix (DSH) apoA-I that is dramatically different from the standard model. Their model possesses an open helical shape that wraps around a prolate ellipsoidal type I hexagonal lyotropic liquid crystalline phase. Here, we used three independent approaches, molecular dynamics, EM tomography, and fluorescence resonance energy transfer spectroscopy (FRET) to assess the validity of the DSH model. (i) By using molecular dynamics, two different approaches, all-atom simulated annealing and coarse-grained simulation, show that initial ellipsoidal DSH particles rapidly collapse to discoidal bilayer structures. These results suggest that, compatible with current knowledge of lipid phase diagrams, apoA-I cannot stabilize hexagonal I phase particles of phospholipid. (ii) By using EM, two different approaches, negative stain and cryo-EM tomography, show that reconstituted apoA-I/HDL particles are discoidal in shape. (iii) By using FRET, reconstituted apoA-I/HDL particles show a 28–34-Å intermolecular separation between terminal domain residues 40 and 240, a distance that is incompatible with the dimensions of the DSH model. Therefore, we suggest that, although novel, the DSH model is energetically unfavorable and not likely to be correct. Rather, we conclude that all evidence supports the likelihood that reconstituted apoA-I/HDL particles, in general, are discoidal in shape.  相似文献   

4.
We developed a computational model of mitochondrial energetics that includes Ca2+, proton, Na+, and phosphate dynamics. The model accounts for distinct respiratory fluxes from substrates of complex I and complex II, pH effects on equilibrium constants and enzyme kinetics, and the acid-base equilibrium distributions of energy intermediaries. We experimentally determined NADH and ΔΨm in guinea pig mitochondria during transitions from de-energized to energized, or during state 2/4 to state 3 respiration, or into hypoxia and uncoupling, and compared the results with those obtained in model simulations. The model quantitatively reproduces the experimentally observed magnitude of ΔΨm, the range of NADH levels, respiratory fluxes, and respiratory control ratio upon transitions elicited by sequential additions of substrate and ADP. Simulation results are also able to mimic the change in ΔΨm upon addition of phosphate to state 4 mitochondria, leading to matrix acidification and ΔΨm polarization. The steady-state behavior of the integrated mitochondrial model qualitatively simulates the dependence of respiration on the proton motive force, and the expected flux-force relationships existing between respiratory and ATP synthesis fluxes versus redox and phosphorylation potentials. This upgraded mitochondrial model provides what we believe are new opportunities for simulating mitochondrial physiological behavior during dysfunctional states involving changes in pH and ion dynamics.  相似文献   

5.
Hemoglobin and related heme proteins, generally referred to as 'globins', reversibly bind gaseous diatomic ligands (O2, NO, and CO) to a penta-coordinate heme iron atom, the ligand filling the sixth coordination site. Over the last decade, several new globins have been reported to display a functionally-relevant hexa-coordinate heme iron atom, whose sixth coordination site is taken by an endogenous protein ligand. The reversible intramolecular hexa- to penta-coordination process at the heme-Fe atom modulates exogenous ligand binding properties of hexa-coordinate globins. Here, we review current knowledge on hexa-coordinate globins in terms of their structural and functional properties.  相似文献   

6.
Serine hydroxymethyltransferase (SHMT), a pyridoxal-5'-phosphate (PLP)-dependent enzyme catalyzes the tetrahydrofolate (H(4)-folate)-dependent retro-aldol cleavage of serine to form 5,10-methylene H(4)-folate and glycine. The structure-function relationship of SHMT was studied in our laboratory initially by mutation of residues that are conserved in all SHMTs and later by structure-based mutagenesis of residues located in the active site. The analysis of mutants showed that K71, Y72, R80, D89, W110, S202, C203, H304, H306 and H356 residues are involved in maintenance of the oligomeric structure. The mutation of D227, a residue involved in charge relay system, led to the formation of inactive dimers, indicating that this residue has a role in maintaining the tetrameric structure and catalysis. E74, a residue appropriately positioned in the structure of the enzyme to carry out proton abstraction, was shown by characterization of E74Q and E74K mutants to be involved in conversion of the enzyme from an 'open' to 'closed' conformation rather than proton abstraction from the hydroxyl group of serine. K256, the residue involved in the formation of Schiffs base with PLP, also plays a crucial role in the maintenance of the tetrameric structure. Mutation of R262 residue established the importance of distal interactions in facilitating catalysis and Y82 is not involved in the formaldehyde transfer via the postulated hemiacetal intermediate but plays a role in stabilizing the quinonoid intermediate. The mutational analysis of scSHMT along with the structure of recombinant Bacillus stearothermophilus SHMT and its substrate(s) complexes was used to provide evidence for a direct transfer mechanism rather than retro-aldol cleavage for the reaction catalyzed by SHMT.  相似文献   

7.
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes.  相似文献   

8.
Jones MK  Gu F  Catte A  Li L  Segrest JP 《Biochemistry》2011,50(12):2249-2263
Apolipoprotein (apo) A-I-containing lipoproteins in the form of high-density lipoproteins (HDL) are inversely correlated with atherosclerosis. Because HDL is a soft form of condensed matter easily deformable by thermal fluctuations, the molecular mechanisms for HDL remodeling are not well understood. A promising approach to understanding HDL structure and dynamics is molecular dynamics (MD). In the present study, two computational strategies, MD simulated annealing (MDSA) and MD temperature jump, were combined with experimental particle reconstitution to explore molecular mechanisms for phospholipid- (PL-) rich HDL particle remodeling. The N-terminal domains of full-length apoA-I were shown to be "sticky", acting as a molecular latch largely driven by salt bridges, until, at a critical threshold of particle size, the associated domains released to expose extensive hydrocarbon regions of the PL to solvent. The "sticky" N-termini also associate with other apoA-I domains, perhaps being involved in N-terminal loops suggested by other laboratories. Alternatively, the overlapping helix 10 C-terminal domains of apoA-I were observed to be extremely mobile or "promiscuous", transiently exposing limited hydrocarbon regions of PL. Based upon these models and reconstitution studies, we propose that separation of the N-terminal domains, as particles exceed a critical size, triggers fusion between particles or between particles and membranes, while the C-terminal domains of apoA-I drive the exchange of polar lipids down concentration gradients between particles. This hypothesis has significant biological relevance since lipid exchange and particle remodeling are critically important processes during metabolism of HDL particles at every step in the antiatherogenic process of reverse cholesterol transport.  相似文献   

9.
Structure-function relationship of CAP-Gly domains   总被引:1,自引:0,他引:1  
In all eukaryotes, CAP-Gly proteins control important cellular processes. The molecular mechanisms underlying the functions of CAP-Gly domains, however, are still poorly understood. Here we use the complex formed between the CAP-Gly domain of p150(glued) and the C-terminal zinc knuckle of CLIP170 as a model system to explore the structure-function relationship of CAP-Gly-mediated protein interactions. We demonstrate that the conserved GKNDG motif of CAP-Gly domains is responsible for targeting to the C-terminal EEY/F sequence motifs of CLIP170, EB proteins and microtubules. The CAP-Gly-EEY/F interaction is essential for the recruitment of the dynactin complex by CLIP170 and for activation of CLIP170. Our findings define the molecular basis of CAP-Gly domain function, including the tubulin detyrosination-tyrosination cycle. They further establish fundamental roles for the interaction between CAP-Gly proteins and C-terminal EEY/F sequence motifs in regulating complex and dynamic cellular processes.  相似文献   

10.
Comparative genomic analysis has revolutionized our ability to predict the metabolic subsystems that occur in newly sequenced genomes, and to explore the functional roles of the set of genes within each subsystem. These computational predictions can considerably reduce the volume of experimental studies required to assess basic metabolic properties of multiple bacterial species. However, experimental validations are still required to resolve the apparent inconsistencies in the predictions by multiple resources. Here, we present combined computational-experimental analyses on eight completely sequenced Pseudomonas species. Comparative pathway analyses reveal that several pathways within the Pseudomonas species show high plasticity and versatility. Potential bypasses in 11 metabolic pathways were identified. We further confirmed the presence of the enzyme O-acetyl homoserine (thiol) lyase (EC: 2.5.1.49) in P. syringae pv. tomato that revealed inconsistent annotations in KEGG and in the recently published SYSTOMONAS database. These analyses connect and integrate systematic data generation, computational data interpretation, and experimental validation and represent a synergistic and powerful means for conducting biological research.  相似文献   

11.
Myotoxin a, a small basic polypeptide isolated from the venom of prairie rattlesnake (Crotalus viridis viridis), has been shown to bind to sarcoplasmic reticulum (SR) Ca(2+)-ATPase. The attachment of myotoxin a to Ca(2+)-ATPase is believed to cause uncoupling of the calcium pump. In order to further elucidate which portion of myotoxin a is important for the uncoupling action, five peptides were synthesized and two peptide fragments were obtained by chemical cleavage. These peptides correspond to discrete portions of the primary sequence of myotoxin a. The peptides are equivalent to the primary sequence of myotoxin a from 1 to 16 residues, 7 to 22 residues, 13 to 28 residues, 19 to 34 residues, and 25 to 42 residues. Chemically produced fragments are equivalent to 1 to 28 residues and 29 to 42 residues of myotoxin a. Peptides of the sequences "YKQCHKKGGHCFPKEK" and "LGKMDCRWKWKCCKKGSG" of myotoxin a inhibited 45Ca uptake into isolated SR and bound to Ca(2+)-ATPase. The same peptides caused weak skeletal muscle vacuolization similar to that caused by native myotoxin a and increased serum creatine kinase activity. The active peptides correspond to the N-terminal and C-terminal portions of myotoxin a. The inactive or less active peptides have sequences which correspond to the middle sequence of myotoxin a. From this study, both the N-terminal and the C-terminal regions of primary sequence of myotoxin a are required to express myotoxin a's biological activity.  相似文献   

12.
The mutation Gly467-->Ser in Glu glucoamylase was designed to investigate differences between two highly homologous wild-type Saccharomycopsis fibuligera Gla and Glu glucoamylases. Gly467, localized in the conserved active site region, S5, is replaced by Ser in the Gla glucoamylase. These amino acid residues are the only two known to occupy this position in the elucidated glucoamylase sequences. The data from the kinetic analysis revealed that replacement of Gly467 with Ser in Glu glucoamylase decreased the kcat towards all substrates tested to values comparable with those of the Gla enzyme. Moreover, the mutant glucoamylase appeared to be less stable compared to the wild-type Glu glucoamylase with respect to thermal unfolding. Microcalorimetric titration studies of the interaction with the inhibitor acarbose indicated differences in the binding between Gla and Glu enzymes. The Gla glucoamylase, although less active, binds acarbose stronger (Ka congruent with 10(13).M(-1)) than the Glu enzyme (Ka congruent with 10(12).M(-1)). In all enzymes studied, the binding of acarbose was clearly driven by enthalpy, with a slightly favorable entropic contribution. The binding of another glucoamylase inhibitor, 1-deoxynojirimycin, was about 8-9 orders of magnitude weaker (Ka congruent with 10(4).M(-1)) than that of acarbose. From comparison of kinetic parameters for the nonglycosylated and glycosylated enzymes it can be deduced that the glycosylation does not play a critical role in enzymatic activity. However, results from differential scanning calorimetry demonstrate an important role of the carbohydrate moiety in the thermal stability of glucoamylase.  相似文献   

13.
The nucleic acid triplexes poly d(T) x poly d(A) x poly d(T), poly (U) x poly (A) x poly (U), and poly (I) x poly (A) x poly (I) display a sort of continuity between each other. However, their morphologies present their own individuality which, considering those of their parent duplexes, are quite unexpected. This comparison helps to understand triplex structure-function relationship. While helical parameters are functions of the sugar pucker, low values of WC and Hoogsteen base-pair propellers is commonplace for triplexes and the Hoogsteen base-pair geometry monitors the effects of the interstrand phosphates charge-charge repulsion.  相似文献   

14.
Structure-function relationship of monocot mannose-binding lectins.   总被引:6,自引:0,他引:6       下载免费PDF全文
A Barre  E J Van Damme  W J Peumans    P Roug 《Plant physiology》1996,112(4):1531-1540
The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application.  相似文献   

15.
Oxidation of methionine to methionine sulphoxide (MetSO) may lead to loss of molecular integrity and function. This oxidation can be 'repaired' by methionine sulphoxide reductases (MSRs), which reduce MetSO back to methionine. Two structurally unrelated classes of MSRs, MSRA and MSRB, show stereoselectivity towards the S and the R enantiomer of the sulphoxide respectively. Interestingly, these enzymes were even maintained throughout evolution in anaerobic organisms. Here, the activity and the nuclear magnetic resonance (NMR) structure of MTH711, a zinc containing MSRB from the thermophilic, methanogenic archaebacterium Methanothermobacter thermoautotrophicus, are described. The structure appears more rigid as compared with similar MSRBs from aerobic and mesophilic organisms. No significant structural differences between the oxidized and the reduced MTH711 state can be deduced from our NMR data. A stable sulphenic acid is formed at the catalytic Cys residue upon oxidation of the enzyme with MetSO. The two non-zinc-binding cysteines outside the catalytic centre are not necessary for activity of MTH711 and are not situated close enough to the active-site cysteine to serve in regenerating the active centre via the formation of an intramolecular disulphide bond. These findings imply a reaction cycle that differs from that observed for other MSRBs.  相似文献   

16.
Hanada T  Ohsumi Y 《Autophagy》2005,1(2):110-118
Atg12, a post-translational modifier, is activated and conjugated to Atg5 by a ubiquitin-like conjugation system, though it has no obvious sequence homology to ubiquitin. The Atg12-Atg5 conjugate is essential for autophagy, an intracellular bulk degradation process. Here, we show that the carboxyl-terminal region of Atg12 that is predicted to fold into a ubiquitin-like structure is necessary and sufficient for both conjugation and autophagy, which indicates that the domain essential for autophagy resides in the ubiquitin-fold region. We further show that two hydrophobic residues within the ubiquitin-fold region are important for autophagy: mutation at Y149 affects conjugate formation catalyzed by Atg10, an E2-like enzyme, while mutation at F154 has no effect on Atg12-Atg5 conjugate formation but its hydrophobic nature is essential for autophagy. In response to the F154 mutation, Atg8-PE conjugation, the other ubiquitin-like conjugation in autophagy, is severely reduced and autophagosome formation fails. Gel filtration analysis suggests that F154 plays a critical role in the assembly of a functional Atg12-Atg5.Atg16 complex that is requisite for autophagosome formation.  相似文献   

17.
18.
NMR and visible spectroscopy were used to characterize the type II tetraheme cytochrome c(3) isolated from the periplasmic space of Desulfovibrio africanus, a sulfate-reducing bacterium. Although structurally similar to other cytochromes c(3), this protein displays distinct functional properties. Proton NMR signals from the four hemes were assigned to the structure in the ferri- and ferrocytochromes using two-dimensional NMR experiments. The thermodynamic parameters of the hemes and of an acid-base center in the type II cytochrome c(3) were determined using NMR and visible spectroscopies. The thermodynamic features indicate that electrostatic effects dominate all of the interactions between the centers and no positive cooperativity between hemes is observed. The redox-Bohr effect in this protein is associated with the acid-base equilibrium of a propionate of heme II instead of propionate 13 of heme I as is the case for all of the type I cytochromes c(3). These novel functional properties are analyzed together with the redox-linked structural differences reported in the literature and reveal a mechanistic basis for type II cytochromes c(3) having a physiological function that is different from that of type I cytochromes c(3).  相似文献   

19.
20.
Sun D  Ren Z  Zeng X  You Y  Pan W  Zhou M  Wang L  Xu A 《Peptides》2011,32(2):300-305
A novel conotoxin lt14a containing 13 amino acid residues with an amidated C-terminus derived from Conus litteratus, belongs to C-C-C-C cysteine pattern. As the smallest peptide of conotoxin framework 14, lt14a could inhibit nicotinic acetylcholine receptor and suppress pain. To elucidate structure-function relationship, we determine the solution structure by NMR and find that lt14a comprises a short duple β-strand region and β-turn motif. An analog [K7A]-lt14a of Ala substitution for Lys in position 7 is designed. Interestingly, [K7A]-lt14a exhibits higher activity than lt14a as long-lasting analgesic in the hotplate pain model in mice. Additionally, MTT assay reveals that the two peptides have low toxicity to human cells. The studies suggest that positively charged residue may not be involved in the blocking mechanism. However, due to the Ala substitution, hydrophobic residues’ patch expansion strengthens the binding ability. A hypothesis is given that in conotoxin lt14a, hydrophobic residues rather than charged residues play a key role during target binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号