首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A preparation of the closed circular DNA duplex was obtained from whole rat ascites hepatoma cells, AH66, by lysis of cells with SDS and purification by CsCl-dye buoyant-density centrifugation. RNase A converted the closed circular mitochondrial DNA to open circular molecules. The closed circular DNA was also sensitive to alkali. The conversion to the open form was shown from the results of centrifugal analyses on neutral and alkaline sucrose density gradients and CsCl-ethidium bromide. These results indicate the presence of at least one RNA region in closed circular double stranded mitochondrial DNA.  相似文献   

2.
A non-integrated form of Epstein-Barr virus DNA was purified from the Burkitt lymphoma-derived human lymphoid cell line Raji by CsCl density gradient centrifugation and neutral glycerol gradient centrifugation. This intracellular form of the virus DNA sediments at a rate typical of a covalently closed circular DNA molecule of the size of the virus genome in both neutral and alkaline solution. Treatment with low doses of X-rays leads to a discontinuous conversion of the molecules to a form with the sedimentation properties of open circular DNA (a circular duplex molecule containing one or more single-strand breaks). The direct observation of large circular DNA molecules by electron microscopy further confirms the covalently closed circular duplex structure of part of the intracellular viral DNA. Such circular molecules were not detected in corresponding DNA fractions from Epstein-Barr virus-negative human lymphoid cell lines. In ethidium bromide/CsCl density gradient centrifugation experiments, the purified non-integrated virus DNA behaves as twisted, covalently closed DNA circles with the same initial superhelix density as polyoma virus DNA. The latter additional purification technique permits the isolation of intracellular Epstein-Barr virus DNA in > 90% pure form from non-producer cells. The molecular weight of the circular virus DNA from Raji cells, determined by contour length measurements, is the same within experimental error as that of the linear DNA from virus particles.  相似文献   

3.
The polymerase chain reaction is a powerful technique used to amplify nucleic acids in vitro . The reaction produces linear products, and as of yet, closed circular products have not been possible. Since the replicatively competent form of many DNA molecules is the closed circular form, it would be adventitious to amplify closed circular DNA as closed circular molecules. Until now, these molecules could only be amplified in vivo in appropriate host cells. Here, we describe an in vitro procedure, ligation-during-amplification (LDA), for selective amplification of closed circular DNA using sequence-specific primers. LDA is useful for site-directed mutagenesis, mutation detection, DNA modification, DNA library screening and circular DNA production.  相似文献   

4.
F K Yoshimura  R A Weinberg 《Cell》1979,16(2):323-332
Both linear (form III) and closed circular (form I) viral DNAs obtained from mouse cells infected with Moloney murine leukemia virus were cleaved by Sal I, Sma I, Bam HI and Pst I restriction endonucleases. DNA fragments generated by these cleavages were ordered with respect to the 5' and 3' ends of the RNA genome by several techniques, including comparisons of the DNA fragments from cleavages of the linear and closed circular forms, double digestions using different combinations of enzymes and the use of an RNA probe specific for the 3' end. DNA from Hirt extractions of infected cells yielded a discrete species of linear viral DNA whose size was determined by agarose gel electrophoresis to be 5.7 x 10(6) daltons. In the course of characterizing the closed circular DNA, we observed two form I DNA molecules. The larger molecule was the same size as the linear DNA. The second molecule migrated faster on agarose gels and was the predominant species of the two closed circular DNAs. Using the restriction endonuclease maps which we derived, we demonstrate that this novel form I DNA is a smaller homogeneous species of viral DNA, missing about 600 nucleotides found in the linear and larger closed circular DNA molecules. We have localized the site of this missing DNA piece to be at either one or both ends of the linear viral DNA.  相似文献   

5.
Infecting bacteriophage mu DNA forms a circular DNA-protein complex   总被引:6,自引:0,他引:6  
Upon superinfection of immune (lysogenic) cells with bacteriophage Mu, a form of Mu DNA accumulates that sediments about twice as fast as the linear phage DNA marker in neutral sucrose gradients. This form is also detected upon infection of sensitive cells with Mu. We have purified it and examined its physical nature. Under the electron microscope it appears circular and supertwisted. Upon treatment with Pronase, phenol or sodium dodecyl sulfate, however, it is converted to a linear Mu-length form, indicating that the circle is not covalently closed. The linear DNA still has heterogeneous host sequences at its termini. The circular DNA is resistant to the action of Escherichia coli exonuclease III and T7 exonuclease, but becomes sensitive to these nucleases after treatment with Pronase showing the presence of a protein that binds non-covalently to the ends of the DNA to circularize it as well as protect it from digestion with exonucleases. The complex is resistant to high salt (up to 6 M-NaCl) but can undergo transitions between forms that are partially open, open circular, linear and circular dimers and trimers. Examination of DNA from mature phage particles reveals that a circular DNA species is present in at least 0.1 to 1% of the population. The purified complex is extremely efficient in transfection of E. coli spheroplasts. We estimate the molecular weight of the protein in this DNA-protein complex to be approximately 64,000, and suggest that this complex might represent the integrative precursor of infecting Mu DNA.  相似文献   

6.
7.
A method for the isolation of eucaryotic extrachromosomal circular (ecc) DNA is described. Exonuclease III was used to preparatively digest linear and open circular forms of DNA; the resultant exonuclease-resistant molecules were then characterized by buoyant density gradient sedimentation and were found to be essentially covalently closed circular DNA. The efficiency of the exonuclease method was compared to ultracentrifugation techniques and was found to give yields greater than those obtained by two or more equilibrium density gradients. The utility of the exonuclease III technique was determined by purifying eccDNAs from mouse liver, brain, heart, and kidney tissues. The results showed that there are tissue-related differences in eccDNA content.  相似文献   

8.
H M Sasmor  J L Betz 《Biochemistry》1990,29(38):9023-9028
Gel shift assays were used to examine the binding of the lactose (lac) repressor to polyoperator DNA molecules. Specific binding was differentiated from nonspecific DNA association by (i) equilibrating repressor-operator complexes below the nonspecific association constant and (ii) demonstrating the effects of the inducer isopropyl beta-D-thiogalactoside (IPTG) on the formation of repressor-operator complexes. With the linear polyoperator molecules, all eight operator sites could be simultaneously bound by distinct repressors. However, with circular molecules, the eight operator sites were saturable by repressor only in the nicked circular state and not in the covalently closed circular form. Under the experimental conditions used, there was no evidence of bifunctional repressor binding or loop formation. The results suggest that the conformational perturbation of DNA that occurs upon specific repressor binding was retained in topologically closed molecules and could modify other operator sites so as to make them unavailable for specific binding.  相似文献   

9.
The recA protein, which is essential for genetic recombination in E. coli, promotes the homologous pairing of double-stranded DNA and linear single-stranded DNA, thereby forming a three-stranded joint molecule called a D loop. Single-stranded DNA stimulates recA protein to unwind double-stranded DNA. By a presumably related mechanism, recA protein promoted the homologous pairing of two circular double-stranded molecules when one of them had a gap in one strand. The two molecules were joined at homologous sites by noncovalent bonds. The covalently closed molecule remained intact and was not topologically linked to the intact circular strand of the gapped substrate. Electron microscopy showed that molecules were usually linked at two or more nearby points. The junctions in most molecules were shorter than 300 nucleotides. Sometimes the region between two extreme points was separated into two arms, producing an ellipsoidal loop (called an eye loop). The junctions in these biparental joint molecules were frequently remote from the site of the gap. We infer that a free end of the interrupted strand crossed over to form a structure like a D loop which moved away from the gap by branch migration.  相似文献   

10.
Examination of in vivo long-labeled, pulse-labeled and pulse-chase-labeled mitochondrial DNA has corroborated and extended the basic elements of the displacement model of replication. Mitochondrial DNA molecules are shown to replicate an average of once per cell doubling in exponentially growing cultures. Analysis of the separate strands of partially replicated molecules indicates that replication is highly asynchronous with heavy-strand synthesis preceding light-strand synthesis. Native and denatured pulse-labeled replicating molecules exhibit sedimentation properties predicted by the displacement model of replication. Pulse-label incorporated into molecules isolated in the lower band region of ethidium bromide/cesium chloride gradients is found primarily in heavy daughter strands. Pulse-label incorporated into molecules isolated in the upper band region is found primarily in light daughter strands. The results of a series of pulse-chase experiments indicate that the complete process of replication requires approximately 120 minutes. Both daughter molecules are shown to segregate in an open circular form. They are then converted to closed circular molecules having a superhelix density near zero. After closure, the 7 S heavy-strand initation sequence is synthesized, and this process is accompanied by nicking, unwinding and closing of at least one of the parental strands resulting in the formation of the D-loop structure. The 7 S heavy-strand initiation sequence of the D-loop structure is not stable and turns over with a half-life of 7·9 hours. We suggest that all in vivo forms of parental closed circular mitochondrial DNA have superhelix densities of near zero, and that the previously observed superhelix density of closed circular mitochondrial DNA, σ~ ?0·02, results from the loss of the 7 S heavy-strand initiation sequence from D-loop mitochondrial DNA molecules during isolation.  相似文献   

11.
Seven cloned small circular DNA molecules from CHO cells were sequenced and examined for the presence of homologies to each other and to a number of other functional sequences present in transposable elements, retroviruses, mammalian repeat sequences, and introns. The sequences of the CHO cell circular DNA molecules did not reveal common structural features that could explain their presence in the circular DNA population. A gene bank was constructed for CHO chromosomal DNA and sequences homologous to two of the seven small circular DNA molecules were isolated and sequenced. The nucleotide sequences present at the junction of circular and chromosomal DNA suggest that a recombination process involving homologous pairing may have been involved in the generation of one, but not the other, of the two circular DNA molecules.  相似文献   

12.
We studied the formation of linked circular DNA molecules promoted by the combined action of rec 1 protein and type I topoisomerase of Ustilago maydis. When ATP was added as cofactor to reactions containing rec 1 protein, pairs of homologous circular DNA molecules became linked after addition of topoisomerase. Closed circular duplex molecules could be joined at homologous sites with circular single-stranded molecules or with other circular duplex molecules, provided that homologous single-stranded DNA fragments or RNA polymerase and nucleoside triphosphates were also added. Complexes formed were topologically linked through regions of heteroduplex DNA. When the analog adenylyl-imidodiphosphate was substituted for ATP, nonhomologous pairs of circular DNA molecules became linked.  相似文献   

13.
RecA protein catalyzes annealing between pairs of circular single-stranded DNA molecules containing complementary sequences varying in length from 3550 nucleotides to 181 nucleotides. The reaction requires ATP and catalytic amounts of recA protein. Molecules containing large complementary inserts are annealed by recA protein to form large multimeric aggregates that migrate slowly in agarose gels. In contrast the products formed from circular molecules containing short complementary regions are principally dimeric structures. We have used electron microscopy, thermal denaturation and kinetic studies to analyze these reaction products. Our results indicate that recA protein catalyzes multiple nucleation events between complementary DNA sequences in the absence of a free end and when these sequences are flanked by extensive noncomplementary regions.  相似文献   

14.
15.
Direct scanning of the fluorescence of DNA in ethidium bromide-stained agarose gels allowed the quantification of closed and open circular DNA forms. Fluorescence of form I was higher than expected compared to form II. Application of this technique is shown for an intercalating drug treatment of DNA.  相似文献   

16.
The interaction of supercoiled, circular SV40 DNA with calf thymus histone fractions has been studied. Five- to ten-fold less f1 histone is required to complex a given amount of DNA compared to the other histones. When the supercoiled DNA is converted to either the relaxed circular form, or full length linear molecules, or gragmented linear or denatured stands, the efficiency of complex formation with f1 histone markedly decreases. We conclude that f1 histone has a special ability to interact with supercoiled DNA. This conclusion is supported by the fact that supercoiled circular Col E1 DNA interacts with f1 as efficiently as does SV40 DNA.  相似文献   

17.
Physical and topological properties of circular DNA   总被引:59,自引:1,他引:58  
Several types of circular DNA molecules are now known. These are classified as single-stranded rings, covalently closed duplex rings, and weakly bonded duplex rings containing an interruption in one or both strands. Single rings are exemplified by the viral DNA from φX174 bacteriophage. Duplex rings appear to exist in a twisted configuration in neutral salt solutions at room temperature. Examples of such molecules are the DNA''s from the papova group of tumor viruses and certain intracellular forms of φX and λ-DNA. These DNA''s have several common properties which derive from the topological requirement that the winding number in such molecules is invariant. They sediment abnormally rapidly in alkaline (denaturing) solvents because of the topological barrier to unwinding. For the same basic reason these DNA''s are thermodynamically more stable than the strand separable DNA''s in thermal and alkaline melting experiments. The introduction of one single strand scission has a profound effect on the properties of closed circular duplex DNA''s. In neutral solutions a scission appears to generate a swivel in the complementary strand at a site in the helix opposite to the scission. The twists are then released and a slower sedimenting, weakly closed circular duplex is formed. Such circular duplexes exhibit normal melting behavior, and in alkali dissociate to form circular and linear single strands which sediment at different velocities. Weakly closed circular duplexes containing an interruption in each strand are formed by intramolecular cyclization of viral λ-DNA. A third kind of weakly closed circular duplex is formed by reannealing single strands derived from circularly permuted T2 DNA. These reconstituted duplexes again contain an interruption in each strand though not necessarily regularly spaced with respect to each other.  相似文献   

18.
The circular deoxyribonucleic acid (DNA) of Bacillus megaterium was fractionated by sedimentation velocity on preparative zonal gradients. The fractions obtained were characterized by analytical sedimentation velocity analysis on neutral and alkaline sucrose gradients, and by contour length measurement by electron microscopy. Each fraction was found to contain circular molecules of one to three discrete sizes, in various combinations of covalently closed and open circular forms. Estimations of the molecular masses of these sizes gave values of 3.9, 6.2, 16.0, 31, and 60 million daltons for the major molecular species. Minor amounts of molecules of 7.6, 11.7, 47, 89, and 112 million daltons were observed in the electron microscope analyses. Length measurements of almost 600 molecules from the various fractions showed that all except six could be placed in distinct size classes. The distribution of molecular sizes in unfractionated circular DNA was shown to consist primarily of the two smallest size classes, although the relative proportions by weight of five of the classes were roughly equivalent.  相似文献   

19.
Treatment of supercoiled pBR322 DNA with ozone resulted in the conversion of closed circular DNA to open circular DNA. Restriction analysis of the resulting open circular DNA showed that ozonolysis in the absence of salt caused single strand cleavage at specific sites.  相似文献   

20.
A new technique has been developed for the rapid isolation of covalently closed circular DNA molecules. The procedure is a selective extraction based on differences in the partitioning of covalently closed circular DNA molecules and noncovalently closed species between phenol and water at acid pH and low ionic strength. Under the conditions described, linear as well as nicked circular DNA is extracted into phenol, while covalently closed circular DNA molecules remain in the water phase. The method permits the quantitative isolation of covalently closed circular DNA from either total cellular DNA or partially purified preparations, to a degree of purity comparable with buoyant density procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号