首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The development of chilling and freezing injury symptoms in plants is known to frequently coincide with peroxidation of free fatty acids. Mitochondria are one of the major sources of reactive oxygen species during cold stress. Recently it has been suggested that uncoupling of oxidation and phosphorylation in mitochondria during oxidative stress can decrease ROS formation by mitochondrial respiratory chain generation. At the same time, it is known that plant uncoupling mitochondrial protein (PUMP) and other UCP-like proteins are not the only uncoupling system in plant mitochondria. All plants have cyanide-resistant oxidase (AOX) whose activation causes an uncoupling of respiration and oxidative phosphorylation. Recently it has been found that in cereals, cold stress protein CSP 310 exists, and that this causes uncoupling of oxidation and phosphorylation in mitochondria.  相似文献   

2.
《Cryobiology》2015,70(3):386-393
Reactive oxygen species (ROS) are one of the main causes for decreased viability in cryopreserved sperm. Many studies have reported the beneficial effect of antioxidant supplements in freezing media for post-thaw sperm quality. In the present study, we explored two new approaches of ROS inhibition in sperm cryopreservation of yellow catfish, namely mitochondrial-targeted antioxidant and metabolic modulator targeting mitochondrial uncoupling pathways. Our study revealed that addition of MitoQ, a compound designed to deliver ubiquinone into mitochondria, significantly decreased ROS production, as well as lipid peroxidation, and increased post-thaw viability. Similarly, sperm incubated with 2,4-dinitrophenol (DNP), a chemical protonophore that induces mitochondrial uncoupling, also had reduced ROS production, as well as lipid peroxidation, and increased post-thaw sperm viability. Conversely, activation of uncoupling protein (UCP2) by 4-hydroxynonenal (HNE) neither reduced ROS production nor increased post-thaw sperm viability. Our findings indicate that ROS inhibition through mitochondrial-targeted antioxidant or mild mitochondrial uncoupling is beneficial for sperm cryopreservation in yellow catfish. Our study provides novel methods to mitigate oxidative stress induced damage in cryopreserved sperm for future applications.  相似文献   

3.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.  相似文献   

4.
Oxidative stress has been postulated as one of the mechanisms underlying the estrogen carcinogenic effect in breast cancer. Estrogens are known to increase mitochondrial-derived reactive oxygen species (ROS) by an unknown mechanism. Given that uncoupling proteins (UCPs) are key regulators of mitochondrial energy efficiency and ROS production, our aim was to check the presence and activity of UCPs in estrogen receptor (ER)-positive and ER-negative breast cancer cells and tumors, as well as their relation to oxidative stress. Estrogen (1 nM) induced higher oxidative stress in the ER-positive MCF-7 cell line, showing increased mitochondrial membrane potential, H2O2 levels, and DNA and protein damage compared to ER-negative MDA-MB-231 cells. All isoforms of uncoupling proteins were highly expressed in ER-positive breast cancer cells and tumors compared to negative ones. ROS production in mitochondria isolated from MCF-7 was increased by inhibition of UCPs with GDP, but not in mitochondria from MDA-MB-231. Estrogen treatment decreased uncoupling protein and catalase levels in MCF-7 and decreased GDP-dependent ROS production in isolated mitochondria. On the whole, these results suggest that estrogens, through an ER-dependent mechanism, may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why estrogens are a risk factor for breast cancer.  相似文献   

5.
Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of “mild uncoupling”. Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis.  相似文献   

6.
7.
Mitochondria in exercise-induced oxidative stress   总被引:5,自引:0,他引:5  
In recent years it has been suggested that reactive oxygen species (ROS) are involved in the damage to muscle and other tissues induced by acute exercise. Despite the small availability of direct evidence for ROS production during exercise, there is an abundance of literature providing indirect support that oxidative stress occurs during exercise. The electron transport associated with the mitochondrial respiratory chain is considered the major process leading to ROS production at rest and during exercise. It is widely assumed that during exercise the increased electron flow through the mitochondrial electron transport chain leads to an increased rate of ROS production. On the other hand, results obtained by in vitro experiments indicate that mitochondrial ROS production is lower in state 3 (ADP-stimulated) than in state 4 (basal) respiration. It is possible, however, that factors, such as temperature, that are modified in vivo during intense physical activity induce changes (uncoupling associated with loss of cytochrome oxidase activity) leading to increased ROS production. The mitochondrial respiratory chain could also be a potential source of ROS in tissues, such as liver, kidney and nonworking muscles, that during exercise undergo partial ischemia because of reduced blood supply. Sufficient oxygen is available to interact with the increasingly reduced respiratory chain and enhance the ROS generation. At the cessation of exercise, blood flow to hypoxic tissues resumes leading to their reoxygenation. This mimics the ischemia-reperfusion phenomenon, which is known to cause excessive production of free radicals. Apart from a theoretical rise in ROS, there is little evidence that exercise-induced oxidative stress is due to its increased mitochondrial generation. On the other hand, if mitochondrial production of ROS supplies a remarkable contribution to exercise-induced oxidative stress, mitochondria should be a primary target of oxidative damage. Unfortunately, there are controversial reports concerning the exercise effects on structural and functional characteristics of mitochondria. However, the isolation of mitochondrial fractions by differential centrifugation has shown that the amount of damaged mitochondria, recovered in the lightest fraction, is remarkably increased by long-lasting exercise.  相似文献   

8.
Stress hormones, such as corticosterone, play a crucial role in orchestrating physiological reaction patterns shaping adapted responses to stressful environments. Concepts aiming at predicting individual and population responses to environmental stress typically consider that stress hormones and their effects on metabolic rate provide appropriate proxies for the energy budget. However, uncoupling between the biochemical processes of respiration, ATP production, and free-radical production in mitochondria may play a fundamental role in the stress response and associated life histories. In this study, we aim at dissecting sub-cellular mechanisms that link these three processes by investigating both whole-organism metabolism, liver mitochondrial oxidative phosphorylation processes (O2 consumption and ATP production) and ROS emission in Zootoca vivipara individuals exposed 21 days to corticosterone relative to a placebo. Corticosterone enhancement had no effect on mitochondrial activity and efficiency. In parallel, the corticosterone treatment increased liver mass and mitochondrial protein content suggesting a higher liver ATP production. We also found a negative correlation between mitochondrial ROS emission and plasma corticosterone level. These results provide a proximal explanation for enhanced survival after chronic exposure to corticosterone in this species. Importantly, none of these modifications affected resting whole-body metabolic rate. Oxygen consumption, ATP, and ROS emission were thus independently affected in responses to corticosterone increase suggesting that concepts and models aiming at linking environmental stress and individual responses may misestimate energy allocation possibilities.  相似文献   

9.
Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces endothelial nitric-oxide synthase (eNOS) uncoupling with enhanced generation of reactive oxygen species (ROS) and decreased production of NO. Ang II promotes a rapid increase in 3-nitrotyrosine formation, and uric acid attenuates Ang II-induced decrease in NO bioavailability, demonstrating that peroxynitrite mediates the effects of Ang II on eNOS dysfunction. Ang II rapidly up-regulates Nox4 protein. Inhibition of Nox4 abolishes the increase in ROS and peroxynitrite generation as well as eNOS uncoupling triggered by Ang II, indicating that Nox4 is upstream of eNOS. This pathway contributes to Ang II-mediated fibronectin accumulation in MCs. Ang II also elicits an increase in mitochondrial abundance of Nox4 protein, and the oxidase contributes to ROS production in mitochondria. Overexpression of mitochondrial manganese superoxide dismutase prevents the stimulatory effects of Ang II on mitochondrial ROS production, loss of NO availability, and MC fibronectin accumulation, whereas manganese superoxide dismutase depletion increases mitochondrial ROS, NO deficiency, and fibronectin synthesis basally and in cells exposed to Ang II. This work provides the first evidence that uncoupled eNOS is responsible for Ang II-induced MC fibronectin accumulation and identifies Nox4 and mitochondrial ROS as mediators of eNOS dysfunction. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal fibrosis.  相似文献   

10.
Mitochondrial uncoupling,ROS generation and cardioprotection   总被引:1,自引:0,他引:1  
Susana Cadenas 《BBA》2018,1859(9):940-950
Mitochondrial oxidative phosphorylation is incompletely coupled, since protons translocated to the intermembrane space by specific respiratory complexes of the electron transport chain can return to the mitochondrial matrix independently of the ATP synthase —a process known as proton leak— generating heat instead of ATP. Proton leak across the inner mitochondrial membrane increases the respiration rate and decreases the electrochemical proton gradient (Δp), and is an important mechanism for energy dissipation that accounts for up to 25% of the basal metabolic rate. It is well established that mitochondrial superoxide production is steeply dependent on Δp in isolated mitochondria and, correspondingly, mitochondrial uncoupling has been identified as a cytoprotective strategy under conditions of oxidative stress, including diabetes, drug-resistance in tumor cells, ischemia-reperfusion (IR) injury or aging. Mitochondrial uncoupling proteins (UCPs) are able to lower the efficiency of oxidative phosphorylation and are involved in the control of mitochondrial reactive oxygen species (ROS) production. There is strong evidence that UCP2 and UCP3, the UCP1 homologues expressed in the heart, protect against mitochondrial oxidative damage by reducing the production of ROS. This review first analyzes the relationship between mitochondrial proton leak and ROS generation, and then focuses on the cardioprotective role of chemical uncoupling and uncoupling mediated by UCPs. This includes their protective effects against cardiac IR, a condition known to increase ROS production, and their roles in modulating cardiovascular risk factors such as obesity, diabetes and atherosclerosis.  相似文献   

11.
One factor that has the potential to regulate reactive oxygen species (ROS) generation is the mild uncoupling of oxidative phosphorylation, i.e. proton (H(+)) leak across the mitochondrial inner membrane. Proton leak has been shown to attenuate ROS generation, whereas ROS and their derivatives (such as superoxide and hydroxynonenal) have been shown to induce H(+) leak through uncoupling proteins (UCPs). This suggests the existence of a feedback loop between ROS and H(+) leak mediated through UCPs. Although the physiological functions of the new UCPs, such as UCP2 and UCP3, are still not established, extensive data support the idea that these mitochondrial carrier proteins are involved in the control of ROS generation. The molecular basis of both ROS generation and hydroxynonenal-induced uncoupling through UCPs is reviewed and the consequences of their interaction for protection against excessive ROS production at the expense of energy production is discussed.  相似文献   

12.
Using three-day-old winter-wheat (Triticum aestivum L.) and six-day-old pea (Pisum sativum L.) seedlings as examples, we studied the effects of inhibitors of the electron transfer chain of plant mitochondria on the uncoupling between oxidation and phosphorylation brought about by the CSP310 stress protein. This uncoupling was inhibited by cyanide and by antibodies against CSP310, but not inhibited by antimycin A. It was shown that, in plant mitochondria, the CSP310 stress protein is involved in the electron transfer via shunting the major cytochrome pathway. In this case, the electron transfer bypasses complex II, ubiquinone, and complex III of the mitochondrial respiratory chain and is realized in the following succession: complex I-CSP310-cytochrome c-complex IV. This electron-transfer pathway was found in winter grass mitochondria during the low-temperature stress and resulted in thermogenesis. It was concluded that CSP310 is a thermogenic system, which is activated in winter grass mitochondria during the low-temperature stress.  相似文献   

13.
The recent knowledge on mitochondria as the substantial source of reactive oxygen species, namely superoxide and hydrogen peroxide efflux from mitochondria, is reviewed, as well as nitric oxide and subsequent peroxynitrite generation in mitochondria and their effects. The reactive oxygen species formation in extramitochondrial locations, in peroxisomes, by cytochrome P450, and NADPH oxidase reaction, is also briefly discussed. Conditions are pointed out under which mitochondria represent the major ROS source for the cell: higher percentage of non-phosphorylating and coupled mitochondria, in vivo oxygen levels leading to increased intensity of the reverse electron transport in the respiratory chain, and nitric oxide effects on the redox state of cytochromes. We formulate hypotheses on the crucial role of ROS generated in mitochondria for the whole cell and organism, in concert with extramitochondrial ROS and antioxidant defense. We hypothesize that a sudden decline of mitochondrial ROS production converts cells or their microenvironment into a “ROS sink” represented by the instantly released excessive capacity of ROS-detoxification mechanisms. A partial but immediate decline of mitochondrial ROS production may be triggered by activation of mitochondrial uncoupling, specifically by activation of recruited or constitutively present uncoupling proteins such as UCP2, which may counterbalance the mild oxidative stress.  相似文献   

14.
Temperature stress can have a devastating effect on plant metabolism, disrupting cellular homeostasis, and uncoupling major physiological processes. A direct result of stress-induced cellular changes is the enhanced accumulation of toxic compounds in cells that include reactive oxygen species (ROS). Although a considerable amount of work has shown a direct link between ROS scavenging and plant tolerance to temperature stress, recent studies have shown that ROS could also play a key role in mediating important signal transduction events. Thus, ROS, such as superoxide (O2), are produced by NADPH oxidases during abiotic stress to activate stress-response pathways and induce defense mechanisms. The rates and cellular sites of ROS production during temperature stress could play a central role in stress perception and protection. ROS levels, as well as ROS signals, are thought to be controlled by the ROS gene network of plants. It is likely that in plants this network is interlinked with the different networks that control temperature stress acclimation and tolerance. In this review paper, we attempt to summarize some of the recent studies linking ROS and temperature stress in plants and propose a model for the involvement of ROS in temperature stress sensing and defense.  相似文献   

15.
Uncoupling proteins (UCPs) are specialized members of the mitochondrial transporter family. They allow passive proton transport through the mitochondrial inner membrane. This activity leads to uncoupling of mitochondrial respiration and to energy waste, which is well documented with UCP1 in brown adipose tissue. The uncoupling activity of the new UCPs (discovered after 1997), such as UCP2 and UCP3 in mammals or avUCP in birds, is more difficult to characterize. However, extensive data support the idea that the new UCPs are involved in the control of reactive oxygen species (ROS) generation. This fits with the hypothesis that mild uncoupling caused by the UCPs prevents ROS production. Activators and inhibitors regulate the proton transport activity of the UCPs. In the absence of activators of proton transport, the UCP allows the permeation of other ions. We suggest that this activity has physiological significance and, for example, UCP3 expressed in glycolytic muscle fibres may be a passive pyruvate transporter ensuring equilibrium between glycolysis and oxidative phosphorylation. Induction of UCP2 expression by glutamine strengthens the proposal that new UCPs could act to determine the choice of mitochondrial substrate. This would obviously have an impact on mitochondrial bioenergetics and ROS production.  相似文献   

16.
17.
Mild, mitochondrial uncoupling increases energy expenditure and can reduce the generation of reactive oxygen species (ROS). Activation of cellular, adaptive stress response pathways can result in an enhanced capacity to reduce oxidative damage. Together, these strategies target energy imbalance and oxidative stress, both underlying factors of obesity and related conditions such as type 2 diabetes. Here we describe a metabolomics-driven effort to uncover the anti-obesity mechanism(s) of xanthohumol (XN), a prenylated flavonoid from hops. Metabolomics analysis of fasting plasma from obese, Zucker rats treated with XN revealed decreases in products of dysfunctional fatty acid oxidation and ROS, prompting us to explore the effects of XN on muscle cell bioenergetics. At low micromolar concentrations, XN acutely increased uncoupled respiration in several different cell types, including myocytes. Tetrahydroxanthohumol also increased respiration, suggesting electrophilicity did not play a role. At higher concentrations, XN inhibited respiration in a ROS-dependent manner. In myocytes, time course metabolomics revealed acute activation of glutathione recycling and long term induction of glutathione synthesis as well as several other changes indicative of short term elevated cellular stress and a concerted adaptive response. Based on these findings, we hypothesize that XN may ameliorate metabolic syndrome, at least in part, through mitochondrial uncoupling and stress response induction. In addition, time course metabolomics appears to be an effective strategy for uncovering metabolic events that occur during a stress response.  相似文献   

18.
The oxidative stress hypothesis of aging predicts that a reduction in the generation of mitochondrial reactive oxygen species (ROS) will decrease oxidative damage and extend life span. Increasing mitochondrial proton leak-dependent state 4 respiration by increasing mitochondrial uncoupling is an intervention postulated to decrease mitochondrial ROS production. When human UCP2 (hUCP2) is targeted to the mitochondria of adult fly neurons, we find an increase in state 4 respiration, a decrease in ROS production, a decrease in oxidative damage, heightened resistance to the free radical generator paraquat, and an extension in life span without compromising fertility or physical activity. Our results demonstrate that neuronal-specific expression of hUCP2 in adult flies decreases cellular oxidative damage and is sufficient to extend life span.  相似文献   

19.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

20.
Uncoupling protein 2 (UCP-2) belongs to the mitochondrial anion carrier family. It is ubiquitously expressed but is most abdundant in the reticuloendothelial system. In addition to uncoupling function, UCP-2 modulates the production of reactive oxygen species (ROS) by isolated mitochondria. Using an antisense oligonucleotide strategy, we investigated whether a defect in UCP-2 expression modulates ROS in intact endothelial cells. Murine endothelial cells (CRL 2181) pretreated by antisense oligonucleotides directed against UCP-2 mRNA exhibited a significant and specific increase in membrane potential and intracellular ROS level compared with control scrambled or anti-UCP-1 and -UCP-3 antisense oligonucleotides. These specific changes induced by UCP-2 antisense oligonucleotides were correlated with a rise in extracellular superoxide anion production and oxidative stress assessed by thiobarbituric acid reactive substance values. Taken together, these data suggest a role for UCP-2 in control of ROS production and subsequent oxidation of surrounding compounds mediating oxidative stress of endothelial cells. These data also support the notion that manipulations of UCP-2 at the genetic level could control ROS metabolism at the cellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号