首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
G-protein-coupled inward rectification K(+) (GIRK) channels play an important role in modulation of synaptic transmission and cellular excitability. The GIRK channels are regulated by diverse intra- and extracellular signaling molecules. Previously, we have shown that GIRK1/GIRK4 channels are activated by extracellular protons. The channel activation depends on a histidine residue in the M1-H5 linker and may play a role in neurotransmission. Here, we show evidence that the heteromeric GIRK1/GIRK4 channels are inhibited by intracellular acidification. This inhibition was produced by selective decrease in the channel open probability with a modest drop in the single-channel conductance. The inhibition does not seem to require G-proteins as it was seen in two G-protein coupling-defective GIRK mutants and in excised patches in the absence of exogenous G-proteins. Three histidine residues in intracellular domains were critical for the inhibition. Individual mutation of His-64, His-228, or His-352 in GIRK4 abolished or greatly diminished the inhibition in homomeric GIRK4. Mutations of any of these histidine residues in GIRK4 or their counterparts in GIRK1 were sufficient to eliminate the pH(i) sensitivity of the heteromeric GIRK1/GIRK4 channels. Thus, the molecular and biophysical bases for the inhibition of GIRK channels by intracellular protons are illustrated. Because of the inequality of the pH(i) and pH(o) in most cells and their relatively independent controls by cellular versus systemic mechanisms, such pH(i) sensitivity may allow these channels to regulate cellular excitability in certain physiological and pathophysiological conditions when intracellular acidosis occurs.  相似文献   

2.
CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4. 1-Kir5.1 were studied in inside-out patches. These Kir4.1-Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (P(open)) approximately 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of P(open) without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at approximately 1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1-Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline P(open) and reduced channel sensitivity to intracellular protons. In the presence of 10 microM PIP2, the Kir4.1-Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1-Kir5.1. In excised patches, interestingly, the Kir4.1-Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons.  相似文献   

3.
G protein-gated inwardly rectifying K+ channels (GIRKs) are activated by a direct interaction with Gbetagamma subunits and also by raised internal [Na+]. Both processes require the presence of phosphatidylinositol bisphosphate (PIP2). Here we show that the proximal C-terminal region of GIRK2 mediates the Na+-dependent activation of both the GIRK2 homomeric channels and the GIRK1/GIRK2 heteromeric channels. Within this region, GIRK2 has an aspartate at position 226, whereas GIRK1 has an asparagine at the equivalent position (217). A single point mutation, D226N, in GIRK2, abolished the Na+-dependent activation of both the homomeric and heteromeric channels. Neutralizing a nearby negative charge, E234S had no effect. The reverse mutation in GIRK1, N217D, was sufficient to restore Na+-dependent activation to the GIRK1N217D/GIRK2D226N heteromeric channels. The D226N mutation did not alter either the single channel properties or the ability of these channels to be activated via the m2-muscarinic receptor. PIP2 dramatically increased the open probability of GIRK1/GIRK2 channels in the absence of Na+ or Gbetagamma but did not preclude further activation by Na+, suggesting that Na+ is not acting simply to promote PIP2 binding to GIRKs. We conclude that aspartate 226 in GIRK2 plays a crucial role in Na+-dependent gating of GIRK1/GIRK2 channels.  相似文献   

4.
Activation of the heteromeric G protein-gated inwardly rectifying K(+) channel (GIRK) GIRK1 and GIRK4 subunits gives rise to I(KACh), which controls excitability in atrial tissue. Although homomeric GIRK4 channels localize to the plasma membrane and display moderate function, GIRK1 channels fail to localize to the cell surface and do not exhibit significant function as homomers. Using oocytes to express GFP-tagged GIRK1 and GIRK4 and chimeras between these two proteins, we have identified two regions, one in the proximal C terminus and another in the distal N terminus that are critical for their subcellular localization. Replacement of both of these regions in GIRK1 with corresponding regions from GIRK4 was required for efficient expression of GIRK1 on the plasma membrane. Replacement of either region by itself was ineffective. The distal N terminus and proximal C terminus have been previously suggested to play important roles in ER-export and subunit co-assembly respectively in this family of channels. Our data indicate for the first time that both of these regions need to work in concert to mediate efficient targeting of these channels to the plasma membrane.  相似文献   

5.
The exact subunit combinations of functional native acid-sensing ion channels (ASICs) have not been established yet, but both homomeric and heteromeric channels are likely to exist. To determine the ability of different subunits to assemble into heteromeric channels, a number of ASIC1a-, ASIC1b-, ASIC2a-, ASIC2b-, and ASIC3-containing homo- and heteromeric channels were studied by whole-cell patch clamp recordings with respect to pH sensitivity, desensitization kinetics, and level of sustained current normalized to peak current. Analyzing and comparing data for these three features demonstrated unique heteromeric channels in a number of co-expression experiments. Formation of heteromeric ASIC1a+2a and ASIC1b+2a channels was foremost supported by the desensitization characteristics that were independent of proton concentration, a feature none of the respective homomeric channels has. Several lines of evidence supported formation of ASIC1a+3, ASIC1b+3, and ASIC2a+3 heteromeric channels. The most compelling was the desensitization characteristics, which, besides being proton-independent, were faster than those of any of the respective homomeric channels. ASIC2b, which homomerically expressed is not activated by protons per se, did not appear to form unique heteromeric combinations with other subunits and in fact appeared to suppress the function of ASIC1b. Co-expression of three subunits such as ASIC1a+2a+3 and ASIC1b+2a+3 resulted in data that could best be explained by coexistence of multiple channel populations within the same cell. This observation seems to be in good agreement with the fact that ASIC-expressing sensory neurons display a variety of acid-evoked currents.  相似文献   

6.
Functionally diverse GluR channels of the AMPA subtype are generated by the assembly of GluR-A, -B, -C, and -D subunits into homo- and heteromeric channels. The GluR-B subunit is dominant in determining functional properties of heteromeric AMPA receptors. This subunit exists in developmentally distinct edited and unedited forms, GluR-B(R) and GluR-B(Q), which differ in a single amino acid in transmembrane segment TM2 (Q/R site). Homomeric GluR-B(R) channels expressed in 293 cells display a low divalent permeability, whereas homomeric GluR-B(Q) and GluR-D channels exhibit a high divalent permeability. Mutational analysis revealed that both the positive charge and the size of the amino acid side chain located at the Q/R site control the divalent permeability of homomeric channels. Coexpression of Q/R site arginine- and glutamine-containing subunits generates cells with varying divalent permeabilities depending on the amounts of expression vectors used for cell transfection. Intermediate divalent permeabilities were traced to the presence of both divalent permeant homomeric and impermeant heteromeric channels. It is suggested that the positive charge contributed by the arginine of the edited GluR-B(R) subunit determines low divalent permeability in heteromeric GluR channels and that changes in GluR-B(R) expression regulate the AMPA receptor-dependent divalent permeability of a cell.  相似文献   

7.
The ATP-sensitive K+ channels (KATP) play an important role in regulating membrane excitability. These channels are regulated by H+ in addition to ATP, ADP, and phospholipids. To understand how protons affect the single-channel properties, Kir6.2DeltaC36 currents were studied in excised inside-out patches. We chose to study the homomeric Kir6.2 channel with 36 amino acids deleted at the C-terminal end, as there are ADP/ATP-binding sites in the SUR subunit, which may obscure the understanding of the channel-gating process. In the absence of ATP, moderate intracellular acidosis (pH 6.8) augmented P(open) with small suppression (by approximately 10%) of the single-channel conductance. The long and intermediate closures were selectively inhibited, leading to a shortening of the mean closed time without significant changes in the mean open time. Stronger acidification (相似文献   

8.
We previously reported that TRPV4 and TRPC1 can co-assemble to form heteromeric TRPV4-C1 channels [12]. In the present study, we characterized some basic electrophysiological properties of heteromeric TRPV4-C1 channels. 4α-Phorbol 12,13-didecanoate (4α-PDD, a TRPV4 agonist) activated a single channel current in HEK293 cells co-expressing TRPV4 and TRPC1. The activity of the channels was abrogated by a TRPC1-targeting blocking antibody T1E3. Conductance of the channels was ~95pS for outward currents and ~83pS for inward currents. The channels with similar conductance were also recorded in cells expressing TRPV4-C1 concatamers, in which assembled channels were expected to be mostly 2V4:2C1. Fluorescence Resonance Energy Transfer (FRET) experiments confirmed the formation of a protein complex with 2V4:2C1 stoichiometry while suggesting an unlikeliness of 3V4:1C1 or 1V4:3C1 stoichiometry. Monovalent cation permeability profiles were compared between heteromeric TRPV4-C1 and homomeric TRPV4 channels. For heteromeric TRPV4-C1 channels, their permeation profile was found to fit to Eisenman sequence VI, indicative of a strong field strength cation binding site, whereas for homomeric TRPV4 channels, their permeation profile corresponded to Eisenman sequence IV for a weak field strength binding site. Compared to homomeric TRPV4 channels, heteromeric TRPV4-C1 channels were slightly more permeable to Ca2+ and had a reduced sensitivity to extracellular Ca2+ inhibition. In summary, we found that, when TRPV4 and TRPC1 were co-expressed in HEK293 cells, the predominate assembly type was 2V4:2C1. The heteromeric TRPV4-C1 channels display distinct electrophysiological properties different from those of homomeric TRPV4 channels.  相似文献   

9.
A new ionotropic glutamate receptor subunit termed KA-2, cloned from rat brain cDNA, exhibits high affinity for [3H]kainate (KD approximately 15 nM). KA-2 mRNA is widely expressed in embryonic and adult brain. Homomeric KA-2 expression does not generate agonist-sensitive channels, but currents are observed when KA-2 is coexpressed with GluR5 or GluR6 subunits. Specifically, coexpression of GluR5(R) and KA-2 produces channel activity, whereas homomeric expression of either subunit does not. Currents through heteromeric GluR5(Q)/KA-2 channels show more rapid desensitization and different current-voltage relations when compared with GluR5(Q) currents. GluR6/KA-2 channels are gated by AMPA, which fails to gate homomeric GluR6 receptor channels. These results suggest possible in vivo partnership relations for high affinity kainate receptors.  相似文献   

10.
To investigate possible effects of adrenergic stimulation on G protein-activated inwardly rectifying K(+) channels (GIRK), acetylcholine (ACh)-evoked K(+) current, I(KACh), was recorded from adult rat atrial cardiomyocytes using the whole cell patch clamp method and a fast perfusion system. The rise time of I(KACh ) was 0. 4 +/- 0.1 s. When isoproterenol (Iso) was applied simultaneously with ACh, an additional slow component (11.4 +/- 3.0 s) appeared, and the amplitude of the elicited I(KACh) was increased by 22.9 +/- 5.4%. Both the slow component of activation and the current increase caused by Iso were abolished by preincubation in 50 microM H89 (N-[2-((p -bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, a potent inhibitor of PKA). This heterologous facilitation of GIRK current by beta-adrenergic stimulation was further studied in Xenopus laevis oocytes coexpressing beta(2)-adrenergic receptors, m(2 )-receptors, and GIRK1/GIRK4 subunits. Both Iso and ACh elicited GIRK currents in these oocytes. Furthermore, Iso facilitated ACh currents in a way, similar to atrial cells. Cytosolic injection of 30-60 pmol cAMP, but not of Rp-cAMPS (a cAMP analogue that is inhibitory to PKA) mimicked the beta(2)-adrenergic effect. The possibility that the potentiation of GIRK currents was a result of the phosphorylation of the beta-adrenergic receptor (beta(2)AR) by PKA was excluded by using a mutant beta(2)AR in which the residues for PKA-mediated modulation were mutated. Overexpression of the alpha subunit of G proteins (Galpha(s)) led to an increase in basal as well as agonist-induced GIRK1/GIRK4 currents (inhibited by H89). At higher levels of expressed Galpha(s), GIRK currents were inhibited, presumably due to sequestration of the beta/gamma subunit dimer of G protein. GIRK1/GIRK5, GIRK1/GIRK2, and homomeric GIRK2 channels were also regulated by cAMP injections. Mutant GIRK1/GIRK4 channels in which the 40 COOH-terminal amino acids (which contain a strong PKA phosphorylation consensus site) were deleted were also modulated by cAMP injections. Hence, the structural determinant responsible is not located within this region. We conclude that, both in atrial myocytes and in Xenopus oocytes, beta-adrenergic stimulation potentiates the ACh-evoked GIRK channels via a pathway that involves PKA-catalyzed phosphorylation downstream from beta(2)AR.  相似文献   

11.
GIRK (G protein-gated inward rectifier K(+) channel) proteins play critical functional roles in heart and brain physiology. Using antibodies directed to either GIRK1 or GIRK4, site-directed mutagenesis, and specific glycosidases, we have investigated the effects of glycosylation in the biosynthesis and heteromerization of these proteins expressed in oocytes. Both GIRK1 and GIRK4 have one extracellular consensus N-glycosylation site. Using chimeras between GIRK1 and GIRK4 as well as a GIRK1 N-glycosylation mutant, we report that GIRK1 was glycosylated at Asn(119), whereas GIRK4 was not glycosylated at Asn(132). GIRK1 membrane-spanning domain 1 was required for optimal glycosylation at Asn(119) because a chimera that contained GIRK4 membrane-spanning domain 1 significantly reduced the addition of a carbohydrate structure at this site. This finding may partly account for the reason that GIRK4 is not glycosylated at Asn(132), either as a homomer or when coexpressed with GIRK1. When the GIRK1(N119Q) mutant was coexpressed with GIRK4, the biophysical properties of the heteromeric channel and the magnitude of the agonist-induced currents were similar to those of controls. Thus, N-glycosylation of GIRK1 at Asn(119) does not appear to affect its physical association with GIRK4, the routing of the heteromer to the cell surface, or heteromeric channel function, unlike the dramatic functional effects of N-glycosylation of ROMK1 at Asn(117) (Schwalbe, R. A., Wang, Z., Wible, B. A., and Brown, A. M. (1995) J. Biol. Chem. 270, 15336-15340).  相似文献   

12.
Acid-sensing ion channels (ASIC) are ligand-gated cation channels that are highly expressed in peripheral sensory and central neurons. ASIC are transiently activated by decreases in extracellular pH and are thought to play important roles in sensory perception, neuronal transmission, and excitability, and in the pathology of neurological conditions, such as brain ischemia. We demonstrate here that the heavy metals Ni(2+) and Cd(2+) dose-dependently inhibit ASIC currents in hippocampus CA1 neurons and in Chinese hamster ovary (CHO) cells heterologously expressing these channels. The effects of both Ni(2+) and Cd(2+) were voltage-independent, fast, and reversible. Neither metal affected activation and desensitization kinetics but rather decreased pH-sensitivity. Moreover, distinct ASIC isoforms were differentially inhibited by Ni(2+) and Cd(2+). External application of 1 mM Ni(2+) rapidly inhibited homomeric ASIC1a and heteromeric ASIC1a/2a channels without affecting ASIC1b, 2a, and ASIC3 homomeric channels and ASIC1a/3 and 2a/3 heteromeric channels. In contrast, external Cd(+) (1 mM) inhibited ASIC2a and ASIC3 homomeric channels and ASIC1a/2a, 1a/3, and 2a/3 heteromeric channels but not ASIC1a homomeric channels. The acid-sensing current in isolated rat hippocampus CA1 neurons, thought to be carried primarily by ASIC1a and 1a/2a, was inhibited by 1 mM Ni(2+). The current study identifies ASIC as a novel target for the neurotoxic heavy metals Cd(2+) and Ni(2+).  相似文献   

13.
K(+) channels composed of G-protein-coupled inwardly rectifying K(+) channel (GIRK) (Kir3.0) subunits are expressed in cardiac, neuronal, and various endocrine tissues. They are involved in inhibiting excitability and contribute to regulating important physiological functions such as cardiac frequency and secretion of hormones. The functional cardiac (K((ACh))) channel activated by G(i)/G(o)-coupled receptors such as muscarinic M(2) or purinergic A(1) receptors is supposed to be composed of the subunits GIRK1 and GIRK4 in a heterotetrameric (2:2) fashion. In the present study, we have manipulated the subunit composition of the K((ACh)) channels in cultured atrial myocytes from hearts of adult rats by transient transfection of vectors encoding for GIRK1 or GIRK4 subunits or GIRK4 concatemeric constructs and investigated the effects on properties of macroscopic I(K(ACh)). Transfection with a GIRK1 vector did not cause any measurable effect on properties of I(K(ACh)), whereas transfection with a GIRK4 vector resulted in a complete loss in desensitization, a reduction of inward rectification, and a slowing of activation. Transfection of myocytes with a construct encoding for a concatemeric GIRK4(2) subunit had similar effects on desensitization and inward rectification. Following transfection of a tetrameric construct (GIRK4(4)), these changes in properties of I(K(ACh)) were still observed but were less pronounced. Heterologous expression in Chinese hamster ovary cells and human embryonic kidney 293 cells of monomeric, dimeric, and tetrameric GIRK4 resulted in robust currents activated by co-expressed A(1) and M(2) receptors, respectively. These data provide strong evidence that homomeric GIRK4 complexes form functional G(beta)gamma gated ion channels and that kinetic properties of GIRK channels, such as activation rate, desensitization, and inward rectification, depend on subunit composition.  相似文献   

14.
Zn2+ and H+ are coactivators of acid-sensing ion channels.   总被引:4,自引:0,他引:4  
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular protons. They are expressed in sensory neurons, where they are thought to be involved in pain perception associated with tissue acidosis. They are also expressed in brain. A number of brain regions, like the hippocampus, contain large amounts of chelatable vesicular Zn(2+). This paper shows that Zn(2+) potentiates the acid activation of homomeric and heteromeric ASIC2a-containing channels (i.e. ASIC2a, ASIC1a+2a, ASIC2a+3), but not of homomeric ASIC1a and ASIC3. The EC(50) for Zn(2+) potentiation is 120 and 111 microm for the ASIC2a and ASIC1a+2a current, respectively. Zn(2+) shifts the pH dependence of activation of the ASIC1a+2a current from a pH(0.5) of 5.5 to 6.0. Systematic mutagenesis of the 10 extracellular histidines of ASIC2a leads to the identification of two residues (His-162 and His-339) that are essential for the Zn(2+) potentiating effect. Mutation of another histidine residue, His-72, abolishes the pH sensitivity of ASIC2a. This residue, which is located just after the first transmembrane domain, seems to be an essential component of the extracellular pH sensor of ASIC2a.  相似文献   

15.
KCNQ2/KCNQ3 channels are the molecular correlates of the neuronal M-channels, which play a major role in the control of neuronal excitability. Notably, they differ from homomeric KCNQ2 channels in their distribution pattern within neurons, with unique expression of KCNQ2 in axons and nerve terminals. Here, combined reciprocal coimmunoprecipitation and two-electrode voltage clamp analyses in Xenopus oocytes revealed a strong association of syntaxin 1A, a major component of the exocytotic SNARE complex, with KCNQ2 homomeric channels resulting in a ∼2-fold reduction in macroscopic conductance and ∼2-fold slower activation kinetics. Remarkably, the interaction of KCNQ2/Q3 heteromeric channels with syntaxin 1A was significantly weaker and KCNQ3 homomeric channels were practically resistant to syntaxin 1A. Analysis of different KCNQ2 and KCNQ3 chimeras and deletion mutants combined with in-vitro binding analysis pinpointed a crucial C-terminal syntaxin 1A-association domain in KCNQ2. Pull-down and coimmunoprecipitation analyses in hippocampal and cortical synaptosomes demonstrated a physical interaction of brain KCNQ2 with syntaxin 1A, and confocal immunofluorescence microscopy showed high colocalization of KCNQ2 and syntaxin 1A at presynaptic varicosities. The selective interaction of syntaxin 1A with KCNQ2, combined with a numerical simulation of syntaxin 1A''s impact in a firing-neuron model, suggest that syntaxin 1A''s interaction is targeted at regulating KCNQ2 channels to fine-tune presynaptic transmitter release, without interfering with the function of KCNQ2/3 channels in neuronal firing frequency adaptation.  相似文献   

16.
RNA editing at the Q/R site in the GluR5 and GluR6 subunits of neuronal kainate receptors regulates channel inhibition by lipid-derived modulators including the cis-unsaturated fatty acids arachidonic acid and docosahexaenoic acid. Kainate receptor channels in which all of the subunits are in the edited (R) form exhibit strong inhibition by these compounds, whereas wild-type receptors that include a glutamine (Q) at the Q/R site in one or more subunits are resistant to inhibition. In the present study, we have performed an arginine scan of residues in the pore loop of the GluR6(Q) subunit. Amino acids within the range from -19 to +7 of the Q/R site of GluR6(Q) were individually mutated to arginine and the mutant cDNAs were expressed as homomeric channels in HEK 293 cells. All but one of the single arginine substitution mutants yielded functional channels. Only weak inhibition, typical of wild-type GluR6(Q) channels, was observed for substitutions +1 to +6 downstream of the Q/R site. However, arginine substitution at several locations upstream of the Q/R site resulted in homomeric channels exhibiting strong inhibition by fatty acids, which is characteristic of homomeric GluR6(R) channels. Based on homology with the pore loop of potassium channels, locations at which R substitution induces susceptibility to fatty acid inhibition face away from the cytoplasm toward the M1 and M3 helices and surrounding lipids.  相似文献   

17.
Several inward rectifier K(+) (Kir) channels are pH-sensitive, making them potential candidates for CO(2) chemoreception in cells. However, there is no evidence showing that Kir channels change their activity at near physiological level of P(CO(2)), as most previous studies were done using high concentrations of CO(2). It is known that the heteromeric Kir4.1-Kir5.1 channels are highly sensitive to intracellular protons with pKa value right at the physiological pH level. Such a pKa value may allow these channels to regulate membrane potentials with modest changes in P(CO(2)). To test this hypothesis, we studied the Kir4.1-Kir5.1 currents expressed in Xenopus oocytes and membrane potentials in the presence and absence of bicarbonate. Evident inhibition of these currents (by approximately 5%) was seen with P(CO(2)) as low as 8 torr. Higher P(CO(2)) levels (23-60 torr) produced stronger inhibitions (by 30-40%). The inhibitions led to graded depolarizations (5-45 mV with P(CO(2)) 8-60 torr). Similar effects were observed in the presence of 24 mM bicarbonate and 5% CO(2). Indeed, the Kir4.1-Kir5.1 currents were enhanced with 3% CO(2) and suppressed with 8% CO(2) in voltage clamp, resulting in hyper- (-9 mV) and depolarization (16 mV) in current clamp, respectively. With physiological concentration of extracellular K(+), the Kir4.1-Kir5.1 channels conduct substantial outward currents that were similarly inhibited by CO(2) as their inward rectifying currents. These results therefore indicate that the heteromeric Kir4.1-Kir5.1 channels are modulated by a modest change in P(CO(2)) levels. Such a modulation alters cellular excitability, and enables the cell to detect hypercapnia and hypocapnia in the presence of bicarbonate.  相似文献   

18.
Ramu Y  Klem AM  Lu Z 《Biochemistry》2004,43(33):10701-10709
Tertiapin (TPN), a small protein toxin originally isolated from honey bee venom, inhibits only certain eukaryotic inward-rectifier K(+) (Kir) channels with high affinity. We found that a short ( approximately 10 residues) sequence in Kir channels, located in the N-terminal part of the linker between the two transmembrane segments, is essential for high-affinity inhibition by TPN and that variability in the region underlies the great variation of TPN affinities among eukaryotic Kir channels. This short variable region is however not present in a bacterial Kir channel (KirBac1.1) or in many other types of prokaryotic and eukaryotic K(+) channels. Thus, the acquisition in evolution of the variable region in eukaryotic Kir channels has created the opportunity to selectively target the numerous types of Kir channel that play important physiological roles. We also show that TPN sensitivity can be readily conferred onto some Kir channels that currently have no known inhibitors by replacing their variable region with that from a TPN-sensitive channel. In heterologous expression systems, such acquired toxin sensitivity will allow currents carried by mutant channels to be readily isolated from interfering background currents. Finally we show that, in the heteromeric GIRK1/4 channels, the GIRK4 and not GIRK1 subunit confers the high affinity for TPN.  相似文献   

19.
Gprotein-activated inwardly rectifying K+ channel (GIRK or Kir3) currents are inhibited by mechanical stretch of the cell membrane, but the underlying mechanisms are not understood. In Xenopus oocytes heterologously expressing GIRK channels, membrane stretch induced by 50% reduction of osmotic pressure caused a prompt reduction of GIRK1/4, GIRK1, and GIRK4 currents by 16.6-42.6%. Comparable GIRK current reduction was produced by protein kinase C (PKC) activation (phorbol 12-myristate 13-acetate). The mechanosensitivity of the GIRK4 current was abolished by pretreatment with PKC inhibitors (staurosporine or calphostin C). Neither hypo-osmotic challenge nor PKC activation affected IRK1 currents. GIRK4 chimera (GIRK4-IRK1-(Lys207-Leu245)) and single point mutant (GIRK4(I229L)), in which the phosphatidylinositol 4,5-bisphosphate (PIP2) binding domain or residue was replaced by the corresponding region of IRK1 to strengthen the channel-PIP2 interaction, showed no mechanosensitivity and minimal PKC sensitivity. IRK1 gained mechanosensitivity and PKC sensitivity by reverse double point mutation of the PIP2 binding domain (L222I/R213Q). Overexpression of Gbetagamma, which is known to strengthen the channel-PIP2 interaction, attenuated the mechanosensitivity of GIRK4 channels. In oocytes expressing a pleckstrin homology domain of PLC-delta tagged with green fluorescent protein, hypo-osmotic challenge or PKC activation caused a translocation of the fluorescence signal from the cell membrane to the cytosol, reflecting PIP2 hydrolysis. The translocation was prevented by pretreatment with PKC inhibitors. Involvement of PKC activation in the mechanosensitivity of muscarinic K+ channels was confirmed in native rabbit atrial myocytes. These results suggest that the mechanosensitivity of GIRK channels is mediated primarily by channel-PIP2 interaction, with PKC playing an important role in modulating the interaction probably through PIP2 hydrolysis.  相似文献   

20.
Acid-sensing ion channels (ASICs), which belong to the epithelial sodium channel/degenerin family, are activated by extracellular protons and are inhibited by amiloride (AMI), an important pharmacological tool for studying all known members of epithelial sodium channel/degenerin. In this study, we reported that AMI paradoxically opened homomeric ASIC3 and heteromeric ASIC3 plus ASIC1b channels at neutral pH and synergistically enhanced channel activation induced by mild acidosis (pH 7.2 to 6.8). The characteristic profile of AMI stimulation of ASIC3 channels was reminiscent of the channel activation by the newly identified nonproton ligand, 2-guanidine-4-methylquinazoline. Using site-directed mutagenesis, we showed that ASIC3 activation by AMI, but not its inhibitory effect, was dependent on the integrity of the nonproton ligand sensing domain in ASIC3 channels. Moreover, the structure-activity relationship study demonstrated the differential requirement of the 5-amino group in AMI for the stimulation or inhibition effect, strengthening the different interactions within ASIC3 channels that confer the paradoxical actions of AMI. Furthermore, using covalent modification analyses, we provided strong evidence supporting the nonproton ligand sensing domain is required for the stimulation of ASIC3 channels by AMI. Finally, we showed that AMI causes pain-related behaviors in an ASIC3-dependent manner. These data reinforce the idea that ASICs can sense nonproton ligands in addition to protons. The results also indicate caution in the use of AMI for studying ASIC physiology and in the development of AMI-derived ASIC inhibitors for treating pain syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号