首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triglyceride-rich lipoprotein (TGRL) lipolysis may provide a proinflammatory stimulus to endothelium. Detergent-resistant plasma membrane microdomains (lipid rafts) have a number of functions in endothelial cell inflammation. The mechanisms of TGRL lipolysis-induced endothelial cell injury were investigated by examining endothelial cell lipid rafts and production of reactive oxygen species (ROS). Lipid raft microdomains in human aortic endothelial cells were visualized by confocal microscopy with fluorescein isothiocyanate-labeled cholera toxin B as a lipid raft marker. Incubation of Atto565-labeled TGRL with lipid raft-labeled endothelial cells showed that TGRL colocalized with the lipid rafts, TGRL lipolysis caused clustering and aggregation of lipid rafts, and colocalization of TGRL remnant particles on the endothelial cells aggregated lipid rafts. Furthermore, TGRL lipolysis caused translocation of low-density lipoprotein receptor-related protein, endothelial nitric oxide synthase, and caveolin-1 from raft regions to nonraft regions of the membrane 3 h after treatment with TGRL lipolysis. TGRL lipolysis significantly increased the production of ROS in endothelial cells, and both NADPH oxidase and cytochrome P-450 inhibitors reduced production of ROS. Our studies suggest that alteration of lipid raft morphology and composition and ROS production could contribute to TGRL lipolysis-mediated endothelial cell injury.  相似文献   

2.
The role of oxidative stress in diabetic complications   总被引:14,自引:0,他引:14  
The morbidity and mortality associated with diabetes is the result of the myriad complications related to the disease. One of the most explored hypotheses to explain the onset of complications is a hyperglycemia-induced increase in oxidative stress. Reactive oxygen species (ROS) are produced by oxidative phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase (NADPH), xanthine oxidase, the uncoupling of lipoxygenases, cytochrome P450 monooxygenases, and glucose autoxidation. Once formed, ROS deplete antioxidant defenses, rendering the affected cells and tissues more susceptible to oxidative damage. Lipid, DNA, and protein are the cellular targets for oxidation, leading to changes in cellular structure and function. Recent evidence suggests ROS are also important as second messengers in the regulation of intracellular signaling pathways and, ultimately, gene expression. This review explores the production of ROS and the propagation and consequences of oxidative stress in diabetes.  相似文献   

3.
Epidemiological and interventional studies have implicated elevated triglyceride-rich lipoprotein (TGRL) levels as a risk factor for cardiovascular disease and vascular inflammation, though the results have not been entirely consistent. This appears particularly relevant in model systems where the lipolysis occurs in the setting of established inflammation (e.g., in pre-existing atherosclerotic plaques), rather than in the tissue capillary beds where lipolysis normally occurs. Two main mechanisms seem to link TGRL lipolysis to vascular inflammation. First, lipolysis of TGRL leaves behind partially lipolyzed remnant particles which are better able to enter the vessel wall than nascent TGRL, have a rate of egress substantially lower than their rate of entry, and contain 5-20 times more cholesterol per particle than LDL. Furthermore, remnants do not require oxidation or other modifications to be phagocytized by macrophages, enhancing foam cell formation. Second, saturated fatty acids and oxidized phospholipids released by lipolysis induce inflammation by activating Toll-like receptors of the innate immune system, via oxidative stress, or by greatly amplifying existing pro-inflammatory signals (caused by subclinical endotoxemia) via mitogen-activated protein kinases. However, n-3 and unbound n-9 unsaturated fatty acids released by lipolysis have anti-inflammatory effects. Thus, the contribution of TGRL lipolysis to inflammation likely depends less on the TGRL concentration than on the balance between pro- and anti-inflammatory factors, and on the setting in which the lipolysis occurs. In the setting of the typical "Western" diet, enriched in saturated and oxidized fatty acids and excessive in size, this balance is likely to be tilted towards increased vascular inflammation and atherosclerosis. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.  相似文献   

4.
Procyanidins have been associated with a reduced risk of cardiovascular diseases such as atherosclerosis. However, the molecular mechanisms underlying this benefit are not fully understood. Increased reactive oxygen species (ROS) production generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a common problem in different cardiovascular diseases. Our objective was to evaluate the effects of procyanidin-rich fractions from distilled grape pomace on NADPH oxidase activity in human umbilical vein endothelial cells (HUVEC). Three differently polymerized and galloylated procyanidin fractions were analyzed for their NADPH oxidase inhibitory activity in cell lysates and in HUVEC cultures. All of the three fractions, up to 1 μg/ml, equally inhibited isolated NADPH oxidase in HUVEC lysates in a concentration-dependent manner and independently of any superoxide anion scavenging activities. The procyanidin fractions even blocked NADPH oxidase activity in intact HUVEC, inhibiting ROS production at both extra- and intracellular levels. The fractions achieved the same effects that known NADPH oxidase inhibitors, such as diphenylene iodonium and apocynin, but they presented better hydrosolubility. Our results demonstrated that procyanidin from grape pomace inhibit human endothelial NADPH oxidase regardless of their polymerization degree and galloylation percentage. Therefore, procyanidins are suitable NADPH oxidase inhibitors which could serve as models for therapeutic alternatives for cardiovascular diseases.  相似文献   

5.
Transforming growth factor-beta (TGF-beta) induces an oxidative stress process in hepatocytes that mediates its apoptotic activity. To determine the cellular source of the early reactive oxygen species (ROS) generated by fetal rat hepatocytes in response to TGF-beta, we used inhibitors that block different ROS-producing systems. Diphenyleneiodonium, which inhibits NADPH oxidase and other flavoproteins, completely blocked the increase in ROS induced by TGF-beta, coincidently with an impairment of caspase-3 activation and cell death. Rotenone, an inhibitor of the NADH dehydrogenase in mitochondrial complex I, attenuated, but did not completely inhibit, ROS-production, caspase activation, and cell death mediated by TGF-beta. No significant protection was observed with inhibitors of other ROS-producing systems, such as cytochrome P450 (metyrapone), cyclooxygenase (indomethacin), and xanthine oxidase (allopurinol). Additional experiments have indicated that two different mechanisms could be involved in the early ROS production by TGF-beta. First, an inducible (cycloheximide-inhibited) NADPH oxidase-like system could account for the extramitochondrial production of ROS. Second, TGF-beta could increase ROS by a rapid downregulation of antioxidant genes. In particular, intramitochondrial ROS would increase by depletion of MnSOD. Finally, glutathione depletion is a late event and it would be more the consequence than the cause of the increase in ROS induced by TGF-beta.  相似文献   

6.
Long-chain nonesterified ("free") fatty acids (FFA) and some of their derivatives and metabolites can modify intracellular production of reactive oxygen species (ROS), in particular O(2)(-) and H(2)O(2). In mitochondria, FFA exert a dual effect on ROS production. Because of slowing down the rate of electron flow through Complexes I and III of the respiratory chain due to interaction within the complex subunit structure, and between Complexes III and IV due to release of cytochrome c from the inner membrane, FFA increase the rate of ROS generation in the forward mode of electron transport. On the other hand, due to their protonophoric action on the inner mitochondrial membrane ("mild uncoupling effect"), FFA strongly decrease ROS generation in the reverse mode of electron transport. In the plasma membrane of phagocytic neutrophils and a number of other types of cells, polyunsaturated FFA stimulate O(2)(-) generation by NADPH oxidase. These effects of FFA can modulate signaling functions of ROS and be, at least partly, responsible for their proapoptotic effects in several types of cells.  相似文献   

7.
Products generated from lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TGRL) are reported to increase endothelial layer permeability. We hypothesize that these increases in permeability result from the active rearrangement and dissolution of the junctional barrier in human aortic endothelial cells, as well as induction of the apoptotic cascade. Human aortic endothelial cells were treated with TGRL lipolysis products generated from coincubation of human TGRL plus lipoprotein lipase. Measurement of transendothelial electrical resistance demonstrated a time-dependent decrease in endothelial barrier function in response to TGRL lipolysis products. Immunofluorescent localization of zonula occludens-1 (ZO-1) showed radial rearrangement along cell borders after 1.5 h of treatment with lipolysis products. A concurrent redistribution of F-actin from the cell body to the cell margins was observed via rhodamine phalloidin staining. Immunofluorescent imaging for occludin and vascular endothelial cadherin showed that these proteins relocalize as well, although these changes are less prominent than for ZO-1. Western analysis of cells exposed to lipolysis products for 3 h revealed the fragmentation of ZO-1, a reduction in occludin, and no change of vascular endothelial cadherin. Lipolysis products also increased caspase-3 activity and induced nuclear fragmentation. Treatments did not cause oncosis in cells at any point during the incubation. These results demonstrate that TGRL lipolysis products play an important role in the regulation of endothelial permeability, the organization of the actin cytoskeleton, the localization and expression of junctional proteins, especially ZO-1, and the induction of apoptosis.  相似文献   

8.
The rat hepatocyte catalyzed oxidation of 2',7'-dichlorofluorescin to form the fluorescent 2,7'-dichlorofluorescein was used to measure endogenous and xenobiotic-induced reactive oxygen species (ROS) formation by intact isolated rat hepatocytes. Various oxidase substrates and inhibitors were then used to identify the intracellular oxidases responsible. Endogenous ROS formation was markedly increased in catalase-inhibited or GSH-depleted hepatocytes, and was inhibited by ROS scavengers or desferoxamine. Endogenous ROS formation was also inhibited by cytochrome P450 inhibitors, but was not affected by oxypurinol, a xanthine oxidase inhibitor, or phenelzine, a monoamine oxidase inhibitor. Mitochondrial respiratory chain inhibitors or hypoxia, on the other hand, markedly increased ROS formation before cytotoxicity ensued. Furthermore, uncouplers of oxidative phosphorylation inhibited endogenous ROS formation. This suggests endogenous ROS formation can largely be attributed to oxygen reduction by reduced mitochondrial electron transport components and reduced cytochrome P450 isozymes. Addition of monoamine oxidase substrates increased antimycin A-resistant respiration and ROS formation before cytotoxicity ensued. Addition of peroxisomal substrates also increased antimycin A-resistant respiration but they were less effective at inducing ROS formation and were not cytotoxic. However, peroxisomal substrates readily induced ROS formation and were cytotoxic towards catalase-inhibited hepatocytes, which suggests that peroxisomal catalase removes endogenous H(2)O(2) formed in the peroxisomes. Hepatocyte catalyzed dichlorofluorescin oxidation induced by oxidase substrates, e.g., benzylamine, was correlated with the cytotoxicity induced in catalase-inhibited hepatocytes.  相似文献   

9.
Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47(phox) association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47(phox) and tyrosine phosphorylation of p47(phox) in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid.  相似文献   

10.
Reactive oxygen species (ROS) play a central role in the pathogenesis of many cardiovascular diseases, such as atherosclerosis and hypertension. Endothelial NADPH oxidase is the major source of intracellular ROS. The present study investigated the role of endothelial NADPH oxidase-derived ROS in angiopoietin-1 (Ang-1)-induced angiogenesis. Exposure of porcine coronary artery endothelial cells (PCAECs) to Ang-1 (250 ng/ml) for periods up to 30 min led to a transient and dose-dependent increase in intracellular ROS. Thirty minutes of pretreatment with the NADPH oxidase inhibitors diphenylene iodinium (DPI, 10 microM) and apocynin (200 microM) suppressed Ang-1-stimulated ROS. Pretreatment with either DPI or apocynin also significantly attenuated Ang-1-induced Akt and p44/42 MAPK phosphorylation. In addition, inhibition of NADPH oxidase significantly suppressed Ang-1-induced endothelial cell migration and sprouting from endothelial spheroids. Using mouse heart microvascular endothelial cells from wild-type (WT) mice and mice deficient in the p47(phox) component of NADPH oxidase (p47(phox-/-)), we found that although Ang-1 stimulated intracellular ROS, Akt and p42/44 MAPK phosphorylation, and cell migration in WT cells, the responses were strikingly suppressed in cells from the p47(phox-/-) mice. Furthermore, exposure of aortic rings from p47(phox-/-) mice to Ang-1 demonstrated fewer vessel sprouts than WT mice. Inhibition of the Tie-2 receptor inhibited Ang-1-induced endothelial migration and vessel sprouting. Together, our data strongly suggest that endothelial NADPH oxidase-derived ROS play a critical role in Ang-1-induced angiogenesis.  相似文献   

11.
Lymphocytes migrate from the blood across endothelial cells to reach foreign substances sequestered in peripheral lymphoid organs and inflammatory sites. To study intracellular signaling in endothelial cells during lymphocyte migration, we used murine endothelial cell lines that promote lymphocyte migration and constitutively express VCAM-1. The maximum rate of resting splenic lymphocyte migration across monolayers of the endothelial cells occurred at 0-24 h. This migration was inhibited by anti-VCAM-1 or anti-alpha4 integrin, suggesting that VCAM-1 adhesion was required for migration. To determine whether signals within the endothelial cells were required for migration, irreversible inhibitors of signal transduction molecules were used to pretreat the endothelial cell lines. Inhibitors of NADPH oxidase activity (diphenyleneiodonium and apocynin) blocked migration >65% without affecting adhesion. Because NADPH oxidase catalyzes the production of reactive oxygen species (ROS), we examined whether ROS were required for migration. Scavengers of ROS inhibited migration without affecting adhesion. Furthermore, VCAM-1 ligand binding stimulated NADPH oxidase-dependent production of ROS by the endothelial cells lines and primary endothelial cell cultures. Finally, VCAM-1 ligand binding induced an apocynin-inhibitable actin restructuring in the endothelial cell lines at the location of the lymphocyte or anti-VCAM-1-coated bead, suggesting that an NADPH oxidase-dependent endothelial cell shape change was required for lymphocyte migration. In summary, VCAM-1 signaled the activation of endothelial cell NADPH oxidase, which was required for lymphocyte migration. This suggests that endothelial cells are not only a scaffold for lymphocyte adhesion, but play an active role in promoting lymphocyte migration.  相似文献   

12.
Several lines of evidence suggest that neurotrophins (NTs) potentiate or cause neuronal injury under various pathological conditions. Since NTs enhance survival and differentiation of cultured neurons in serum or defined media containing antioxidants, we set out experiments to delineate the patterns and underlying mechanisms of brain-derived neurotrophic factor (BDNF)-induced neuronal injury in mixed cortical cell cultures containing glia and neurons in serum-free media without antioxidants, where the three major routes of neuronal cell death, oxidative stress, excitotoxicity, and apoptosis, have been extensively studied. Rat cortical cell cultures, after prolonged exposure to NTs, underwent widespread neuronal necrosis. BDNF-induced neuronal necrosis was accompanied by reactive oxygen species (ROS) production and was dependent on the macromolecular synthesis. cDNA microarray analysis revealed that BDNF increased the expression of cytochrome b558, the plasma membrane-spanning subunit of NADPH oxidase. The expression and activation of NADPH oxidase were increased after exposure to BDNF. The selective inhibitors of NADPH oxidase prevented BDNF-induced ROS production and neuronal death without blocking antiapoptosis action of BDNF. The present study suggests that BDNF-induced expression and activation of NADPH oxidase cause oxidative neuronal necrosis and that the neurotrophic effects of NTs can be maximized under blockade of the pronecrotic action.  相似文献   

13.
Myeloperoxidase (MPO) is an important enzyme involved in the genesis and development of atherosclerosis. Vascular peroxidase 1 (VPO1) is a newly discovered member of the peroxidase family that is mainly expressed in vascular endothelial cells and smooth muscle cells and has structural characteristics and biological activity similar to those of MPO. Our specific aims were to explore the effects of VPO1 on endothelial cell apoptosis induced by oxidized low-density lipoprotein (ox-LDL) and the underlying mechanisms. The results showed that ox-LDL induced endothelial cell apoptosis and the expression of VPO1 in endothelial cells in a concentration- and time-dependent manner concomitant with increased intracellular reactive oxygen species (ROS) and hypochlorous acid (HOCl) generation, and up-regulated protein expression of the NADPH oxidase gp91phox subunit and phosphorylation of p38 MAPK. All these effects of ox-LDL were inhibited by VPO1 gene silencing and NADPH oxidase gp91phox subunit gene silencing or by pretreatment with the NADPH oxidase inhibitor apocynin or diphenyliodonium. The p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor DEVD-CHO significantly inhibited ox-LDL-induced endothelial cell apoptosis, but had no effect on intracellular ROS and HOCl generation or the expression of NADPH oxidase gp91phox subunit or VPO1. Collectively, these findings suggest for the first time that VPO1 plays a critical role in ox-LDL-induced endothelial cell apoptosis and that there is a positive feedback loop between VPO1/HOCl and the now-accepted dogma that the NADPH oxidase/ROS/p38 MAPK/caspase-3 pathway is involved in ox-LDL-induced endothelial cell apoptosis.  相似文献   

14.
Several rich sources of polyphenols stimulate the endothelial formation of nitric oxide (NO), a potent vasoprotecting factor, via the redox-sensitive activation of the PI3-kinase/Akt pathway leading to the phosphorylation of endothelial NO synthase (eNOS). The present study examined the molecular mechanism underlying the stimulatory effect of epicatechins on eNOS. NO-mediated relaxation was assessed using porcine coronary artery rings in the presence of indomethacin, and charybdotoxin plus apamin, inhibitors of cyclooxygenases and EDHF-mediated responses, respectively. The phosphorylation level of Akt and eNOS was assessed in cultured coronary artery endothelial cells by Western blot, and ROS formation using dihydroethidine. (−)-Epigallocatechin-3-O-gallate (EGCg) caused endothelium-dependent relaxations in coronary artery rings and the phosphorylation of Akt and eNOS in endothelial cells. These responses were inhibited by membrane-permeant analogues of superoxide dismutase and catalase, whereas native superoxide dismutase, catalase and inhibitors of major enzymatic sources of reactive oxygen species including NADPH oxidase, xanthine oxidase, cytochrome P450 and the mitochondrial respiration chain were without effect. The EGCg derivative with all hydroxyl functions methylated induced neither relaxations nor the intracellular formation of ROS, whereas both responses were observed when the hydroxyl functions on the gallate moiety were present. In conclusion, EGCg causes endothelium-dependent NO-mediated relaxations of coronary artery rings through the Akt-dependent activation of eNOS in endothelial cells. This response is initiated by the intracellular formation of superoxide anions and hydrogen peroxide, and is critically dependent on the gallate moiety and on the presence of hydroxyl functions possibly through intracellular auto-oxidation.  相似文献   

15.
It has been shown that oxidative stress occurs in chronic hepatitis C. Release of reactive oxygen species (ROS) from sequestered phagocytes and activated resident macrophages represents the predominant component of oxidative stress in the liver. However, little is known about the ability of the monocyte to produce ROS in response to protein of hepatitis C virus. In this study, we investigated the ROS production in human monocytes stimulated by several viral proteins of hepatitis C virus. Human monocytes from healthy blood donors were incubated with recombinant viral protein: Core, NS3, NS4, and NS5. ROS production was measured by chemiluminescence. Only NS3 triggered ROS production in human monocytes. Generated ROS were mainly the anion superoxide. NS3 also induced a rapid and transient increase in intracellular calcium concentration measured by a video digital microscopy technique. By using different metabolic inhibitors, we showed that ROS production requires calcium influx, tyrosine kinases, and the stress-activated protein kinase, p38. The study of p47(PHOX) phosphorylation and translocation showed that NADPH oxidase was activated and involved in ROS production induced by NS3. In a second experiment, NS3 inhibited the oxidative burst induced by phorbol 12-myristate 13-acetate. These results indicate that NS3 activates NADPH oxidase and modulates ROS production, which may be involved in the natural history of hepatitis C infection.  相似文献   

16.
Advanced glycation end-products (AGEs) trigger multiple metabolic disorders in the vessel wall that may in turn lead to endothelial dysfunction. The molecular mechanisms by which AGEs generate these effects are not completely understood. Oxidative stress plays a key role in the development of deleterious effects that occur in endothelium during diabetes. Our main objectives were to further understand how AGEs contribute to reactive oxygen species (ROS) overproduction in endothelial cells and to evaluate the protective effect of an antioxidant plant extract. The human endothelial cell line EA.hy926 was treated with native or modified bovine serum albumin (respectively BSA and BSA-AGEs). To monitor free radicals formation, we used H2DCF-DA, dihydroethidium (DHE), DAF-FM-DA and MitoSOX Red dyes. To investigate potential sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial inhibitors were used. The regulation of different types of ROS by the polyphenol-rich extract from the medicinal plant Doratoxylon apetalum was also studied for a therapeutic perspective. BSA-AGEs exhibited not only less antioxidant properties than BSA, but also pro-oxidant effects. The degree of albumin glycoxidation directly influenced oxidative stress through a possible communication between NADPH oxidase and mitochondria. D. apetalum significantly decreased intracellular hydrogen peroxide and superoxide anions mainly detected by H2DCF-DA and DHE respectively. Our results suggest that BSA-AGEs promote a marked oxidative stress mediated at least by NADPH oxidase and mitochondria. D. apetalum plant extract appeared to be an effective antioxidant compound to protect endothelial cells.  相似文献   

17.
Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.  相似文献   

18.
Human immunodeficiency virus (HIV) regulatory protein Tat has pro-oxidant property, which might contribute to Tat-induced long terminal repeat region (LTR) transactivation. However, the intracellular mechanisms whereby Tat triggers ROS production, and the relationship between Tat-induced ROS production and LTR transactivation, are still subject to debate. The present study was undertaken to evaluate the specific effects of Tat on nicotinamide adenine denucleotide phosphate (NADPH) oxidase in MAGI cells, and to determine the specific role of NADPH oxidase in Tat-induced LTR transactivation. Application of Tat to MAGI cells caused increases in ROS formation that were prevented by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2, but not by other inhibitors of pro-oxidant enzymes or siRNA Nox4. Furthermore, inhibition of NADPH oxidase by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2 attenuated Tat-induced p65 phosphorylation and IKK phosphorylation. Phosphatidylinositol 3-kinase/Akt signaling pathway was involved in Tat-induced NADPH oxidase stimulation. Finally, NADPH oxidase inhibitors or Nox2 siRNA, but not control siRNA, inhibited Tat-induced LTR transactivation. Tat-induced HIV-1 LTR transactivation was inhibited in wortmannin or LY294002 treated cells compared to control cells. Together, these data describe a specific and biologically significant signaling component of the MAGI cells response to Tat, and suggest the PI3K/Akt signaling pathway might originate in part with Tat-induced activation of NADPH oxidase and LTR transactivation.  相似文献   

19.
The aim of the present study was to assess the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), monocytic adhesion of human aortic endothelial cells (HAECs), and the production of intracellular reactive oxygen species (ROS), when HAECs were stimulated by 7-ketocholesterol. 7-ketocholesterol enhances surface expression of ICAM-1 and VCAM-1 as determined by EIA, induces their mRNA expression by RT-PCR, and stimulates adhesiveness of HAECs to U937 monocytic cells. We confirmed up-regulation of ROS production of HAECs treated with 7-ketocholesterol. Although the surface expression of ICAM-1 and VCAM-1 on HAECs treated with 7-ketocholesterol increased in a time-dependent manner, alpha-tocopherol inhibited this increase of the surface expression of ICAM-1 and VCAM-1. In the monocytic adhesion assay, adhesion of U937 to HAECs treated with 7-ketocholesterol was enhanced, but monoclonal anti-ICAM-1 and VCAM-1 antibodies reduced the endothelial adhesiveness. In conclusion, this study suggests that the endothelial adhesiveness to monocytic cells that was increased by 7-ketocholesterol was associated with enhanced expression of ICAM-1 and VCAM-1 mediated by ROS production.  相似文献   

20.
Shear stress modulates endothelial physiology, yet the effect(s) of flow cessation is poorly understood. The initial metabolic responses of flow-adapted bovine pulmonary artery endothelial cells to the abrupt cessation of flow (simulated ischemia) was evaluated using a perfusion chamber designed for continuous spectroscopy. Plasma membrane potential, production of reactive O2 species (ROS), and intracellular Ca(2+) and nitric oxide (NO) levels were measured with fluorescent probes. Within 15 s after flow cessation, flow-adapted cells, but not cells cultured under static conditions, showed plasma membrane depolarization and an oxidative burst with generation of ROS that was inhibited by diphenyleneiodonium. EGTA-inhibitable elevation of intracellular Ca(2+) and NO were observed at approximately 30 and 60 s after flow cessation, respectively. NO generation was decreased in the presence of inhibitors of NO synthase and calmodulin. Thus flow-adapted endothelial cells sense the altered hemodynamics associated with flow cessation and respond by plasma membrane depolarization, activation of NADPH oxidase, Ca(2+) influx, and activation of Ca(2+)/calmodulin-dependent NO synthase. This signaling response is unrelated to cellular anoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号