首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prolyl 4-hydroxylases (P4Hs) are 2-oxoglutarate dioxygenases that catalyze the hydroxylation of peptidyl prolines. They play an important role in collagen synthesis, oxygen homeostasis, and plant cell wall formation. We describe four structures of a P4H from the green alga Chlamydomonas reinhardtii, two of the apoenzyme at 1.93 and 2.90 A resolution, one complexed with the competitive inhibitor Zn2+, and one with Zn2+ and pyridine 2,4-dicarboxylate (which is an analogue of 2-oxoglutarate) at 1.85 A resolution. The structures reveal the double-stranded beta-helix core fold (jellyroll motif), typical for 2-oxoglutarate dioxygenases. The catalytic site is at the center of an extended shallow groove lined by two flexible loops. Mutagenesis studies together with the crystallographic data indicate that this groove participates in the binding of the proline-rich peptide-substrates. It is discussed that the algal P4H and the catalytic domain of collagen P4Hs have notable structural similarities, suggesting that these enzymes form a separate structural subgroup of P4Hs different from the hypoxia-inducible factor P4Hs. Key structural differences between these two subgroups are described. These studies provide first insight into the structure-function relationships of the collagen P4Hs, which unlike the hypoxia-inducible factor P4Hs use proline-rich peptides as their substrates.  相似文献   

3.
4.
The single 3-hydroxyproline residue in the collagen I polypeptides is essential for proper fibril formation and bone development as its deficiency leads to recessive osteogenesis imperfecta. The vertebrate prolyl 3-hydroxylase (P3H) family consists of three members, P3H1 being responsible for the hydroxylation of collagen I. We expressed human P3H2 as an active recombinant protein in insect cells. Most of the recombinant polypeptide was insoluble, but small amounts were also present in the soluble fraction. P3H1 forms a complex with the cartilage-associated protein (CRTAP) that is required for prolyl 3-hydroxylation of fibrillar collagens. However, coexpression with CRTAP did not enhance the solubility or activity of the recombinant P3H2. A novel assay for P3H activity was developed based on that used for collagen prolyl 4-hydroxylases (C-P4H) and lysyl hydroxylases (LH). A large amount of P3H activity was found in the P3H2 samples with (Gly-Pro-4Hyp)5 as a substrate. The Km and Ki values of P3H2 for 2-oxoglutarate and its certain analogues resembled those of the LHs rather than the C-P4Hs. Unlike P3H1, P3H2 was strongly expressed in tissues rich in basement membranes, such as the kidney. P3H2 hydroxylated more effectively two synthetic peptides corresponding to sequences that are hydroxylated in collagen IV than a peptide corresponding to the 3-hydroxylation site in collagen I. These findings suggest that P3H2 is responsible for the hydroxylation of collagen IV, which has the highest 3-hydroxyproline content of all collagens. It is thus possible that P3H2 mutations may lead to a disease with changes in basement membranes.  相似文献   

5.
Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis.   总被引:12,自引:0,他引:12  
  相似文献   

6.
7.
Three hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the HIFs by hydroxylating prolines at two separate sites in the oxygen-dependent degradation domain (ODDD) of their alpha subunits. We compared in vitro hydroxylation by purified recombinant human HIF-P4Hs of 19-20- and 35-residue peptides corresponding to the two sites in HIF-alphas and purified recombinant HIF-1alpha and HIF-2alpha ODDDs of 248 and 215 residues. The increase in the length of peptides representing the C-terminal site from 19 to 20 to 35 residues reduced the K(m) values to 90-800 nm, i.e. to 0.7-11% of those for the shorter peptides, whereas those representing the N-terminal site were 10-470 microm, i.e. 10-135%. The K(m) values of HIF-P4H-1 for the recombinant HIF-alpha ODDDs were 10-20 nm, whereas those of HIF-P4H-2 and -3 were 60-140 nm, identical values being found for the wild-type HIF-1alpha ODDD and its N site mutant. The K(m) values for the C site mutant were about 5-10 times higher but only 0.2-3% of those for the 35-residue N site peptides, and this marked difference suggested that the HIF-P4Hs may become bound first to the C-terminal site of an ODDD and that this binding may enhance subsequent binding to the N-terminal site. The K(m) values of HIF-P4H-2 for oxygen determined with the HIF-1alpha ODDD and both its mutants as substrates were all about 100 microm, being 40% of those reported for the three HIF-P4Hs with a 19-residue peptide. Even this value is high compared with tissue O(2) levels, indicating that HIF-P4Hs are effective oxygen sensors.  相似文献   

8.
The collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of 4-hydroxyproline by the hydroxylation of proline residues in -Xaa-Pro-Gly-sequences. The vertebrate enzymes are alpha 2 beta 2 tetramers in which protein-disulfide isomerase serves as the beta subunit. Two isoforms of the catalytic alpha subunit have been identified and shown to form [alpha(I)]2 beta 2 and [alpha(II)]2 beta 2 tetramers, the type I and type II C-P4Hs, respectively. The peptide-substrate-binding domain of type I C-P4H has been shown to be located between residues 138 and 244 in the 517-residue alpha(I) subunit and to be distinct from the catalytic domain that is located in the C-terminal region. We report here that a recombinant human C-P4H alpha(I) polypeptide Phe144-Ser244 forms a folded domain consisting of five alpha helices and one short beta strand. This structure is quite different from those of other proline-rich peptide-binding modules, which consist mainly of beta strands. Binding of the peptide (Pro-Pro-Gly)2 to this domain caused major chemical shifts in many backbone amide resonances, the residues showing the largest shifts being mainly hydrophobic, including three tyrosines. The Kd values determined by surface plasmon resonance and isothermal titration calorimetry for the binding of several synthetic peptides to the alpha(I) and the corresponding alpha(II) domain were very similar to the Km and Ki values for these peptides as substrates and inhibitors of the type I and type II C-P4H tetramers. The Kd values of the alpha(I) and alpha(II) domains for (Gly-Pro-4Hyp)5 were much higher than those for (Pro-Pro-Gly)5, indicating a marked decrease in the affinity of hydroxylated peptides for the domain. Many characteristic features of the binding of peptides to the type I and type II C-P4H tetramers can thus be explained by the properties of binding to this domain rather than the catalytic domain.  相似文献   

9.
Prolyl 4-hydroxylases (P4Hs) act on collagens (C-P4Hs) and the oxygen-dependent degradation domains (ODDDs) of hypoxia-inducible factor alpha subunits (HIF-P4Hs) leading to degradation of the latter. We report data on a human P4H possessing a transmembrane domain (P4H-TM). Its gene is also found in zebrafish but not in flies and nematodes. Its sequence more closely resembles those of the C-P4Hs than the HIF-P4Hs, but it lacks the peptide substrate-binding domain of the C-P4Hs. P4H-TM levels in cultured cells are increased by hypoxia, and P4H-TM is N-glycosylated and is located in endoplasmic reticulum membranes with its catalytic site inside the lumen, a location differing from those of the HIF-P4Hs. Despite this, P4H-TM overexpression in cultured neuroblastoma cells reduced HIF-alpha ODDD reporter construct levels, and its small interfering RNA increased HIF-1alpha protein level, in the same way as those of HIF-P4Hs. Furthermore, recombinant P4H-TM hydroxylated the two critical prolines in HIF-1alpha ODDD in vitro, with a preference for the C-terminal proline, whereas it did not hydroxylate any prolines in recombinant type I procollagen chains.  相似文献   

10.
11.
The collagen prolyl 4-hydroxylases (collagen P4Hs, EC 1.14.11.2) play a key role in the synthesis of the extracellular matrix. The vertebrate enzymes are alpha(2)beta(2) tetramers, the beta subunit being identical to protein disulfide isomerase (PDI). The main Caenorhabditis elegans collagen P4H form is an unusual PHY-1/PHY-2/(PDI)(2) mixed tetramer consisting of two types of catalytic alpha subunit, but the PHY-1 and PHY-2 polypeptides also form active PHY/PDI dimers. The lengths of peptide substrates have a major effect on their interaction with the P4H tetramers, the K(m) values decreasing markedly with increasing chain length. This phenomenon has been explained in terms of processive binding of the two catalytic subunits to long peptides. We determined here the K(m) values of a collagen P4H having two catalytic sites, the C. elegans mixed tetramer, and a form having only one such site, the PHY-1/PDI dimer, for peptides of varying lengths. All the K(m) values of the PHY-1/PDI dimer were found to be about 1.5-2.5 times those of the tetramer, but increasing peptide length led to identical decreases in the values of both enzyme forms. The K(m) for a nonhydroxylated collagen fragment with 33 -X-Y-Gly-triplets but only 11 -X-Pro-Gly-triplets was found to correspond to the number of the former rather than the latter. To study the individual roles of the two catalytic sites in a tetramer, we produced mutant PHY-1/PHY-2/(PDI)(2) tetramers in which binding of the Fe(2+) ion or 2-oxoglutarate to one of the two catalytic sites was prevented. The activities of the mutant tetramers decreased to markedly less than 50% of that of the wild type, being about 5-10% and 20-30% with the enzymes having one of the two Fe(2+)-binding sites or 2-oxoglutarate-binding sites inactivated, respectively, while the K(m) values for these cosubstrates or peptide substrates were not affected. Our data thus indicate that although collagen P4Hs do not act on peptide substrates by a processive mechanism, prevention of hydroxylation at one of the two catalytic sites in the tetramer impairs the function of the other catalytic site.  相似文献   

12.
Prolyl 4-hydroxylases (P4Hs) catalyze formation of 4-hydroxyproline (4Hyp), which is found in many plant glycoproteins. We cloned and characterized Cr-P4H-1, one of 10 P4H-like Chlamydomonas reinhardtii polypeptides. Recombinant Cr-P4H-1 is a soluble 29-kD monomer that effectively hydroxylated in vitro both poly(l-Pro) and synthetic peptides representing Pro-rich motifs found in the Chlamydomonas cell wall Hyp-rich glycoprotein (HRGP) GP1. Similar Pro-rich repeats that are likely to be Cr-P4H-1 substrates are also present in the cell wall HRGP GP2 and probably GP3. Suppression of the gene encoding Cr-P4H-1 by RNA interference led to a defective cell wall consisting of a loose network of fibrils resembling the inner and outer W1 and W7 layers of the wild-type wall, while the layers forming the dense central triplet were absent. The lack of Cr-P4H-1 most probably affected 4Hyp content of the major HRPGs of the central triplet, GP1, GP2, and GP3. The reduced 4Hyp levels in these HRGPs can also be expected to affect their glycosylation and, thus, the interactive properties and stabilities of their fibrous shafts. Interestingly, our RNA interference data indicate that the nine other Chlamydomonas P4H-like polypeptides could not fully compensate for the lack of Cr-P4H-1 activity and are therefore likely to have different substrate specificities and functions.  相似文献   

13.
14.
Crude preparations of lysyl hydroxylase were extracted from chick-embryo tendons synthesizing exclusively type I collagen, chick-embryo sterna synthesizing exclusively type II collagen and HT-1080 sarcoma cells synthesizing exclusively type IV collagen. No differences were found in the Km values for Fe2+, 2-oxoglutarate and ascorbate between these three enzymes preparations. Similarly no differences were found in the Km values for type I and type II protocollagens and the rate at which type IV protocollagen is hydroxylated between these enzyme preparations. The extent to which type I protocollagen could be hydroxylated by the three enzymes was likewise identical. These data strongly argue against the existence of collagen-type-specific lysyl hydroxylase isoenzymes.  相似文献   

15.
(2S)-Flavanone 3-hydroxylase from flowers of Petunia hybrida catalyses the conversion of (2S)-naringenin to (2R,3R)-dihydrokaempferol. The enzyme could be partially stabilized under anaerobic conditions in the presence of ascorbate. For purification, 2-oxoglutarate and Fe2+ had to be added to the buffers. The hydroxylase was purified about 200-fold by a six-step procedure with low recovery. The Mr of the enzyme was estimated by gel filtration to be about 74,000. The hydroxylase reaction has a pH optimum at pH 8.5 and requires as cofactors oxygen, 2-oxoglutarate, Fe2+ and ascorbate. With 2-oxo[1-14C]glutarate in the enzyme assay dihydrokaempferol and 14CO2 are formed in a molar ratio of 1:1. Catalase stimulates the reaction. The product was unequivocally identified as (+)-(2R,3R)-dihydrokaempferol. (2S)-Naringenin, but not the (2R)-enantiomer is a substrate of the hydroxylase. (2S)-Eriodictyol is converted to (2R,3R)-dihydroquercetin. In contrast, 5,7,3',4',5'-pentahydroxy-flavanone is not a substrate. Apparent Michaelis constants for (2S)-naringenin and 2-oxoglutarate were determined to be respectively 5.6 mumol X l-1 and 20 mumol X l-1 at pH 8.5. The Km for (2S)-eriodictyol is 12 mumol X l-1 at pH 8.0. Pyridine 2,4-dicarboxylate and 2,5-dicarboxylate are strong competitive inhibitors with respect to 2-oxoglutarate with Ki values of 1.2 mumol X l-1 and 40 mumol X l-1, respectively.  相似文献   

16.
Posttranslational modifications can cause profound changes in protein function. Typically, these modifications are reversible, and thus provide a biochemical on-off switch. In contrast, proline residues are the substrates for an irreversible reaction that is the most common posttranslational modification in humans. This reaction, which is catalyzed by prolyl 4-hydroxylase (P4H), yields (2S,4R)-4-hydroxyproline (Hyp). The protein substrates for P4Hs are diverse. Likewise, the biological consequences of prolyl hydroxylation vary widely, and include altering protein conformation and protein–protein interactions, and enabling further modification. The best known role for Hyp is in stabilizing the collagen triple helix. Hyp is also found in proteins with collagen-like domains, as well as elastin, conotoxins, and argonaute 2. A prolyl hydroxylase domain protein acts on the hypoxia inducible factor α, which plays a key role in sensing molecular oxygen, and could act on inhibitory κB kinase and RNA polymerase II. P4Hs are not unique to animals, being found in plants and microbes as well. Here, we review the enzymic catalysts of prolyl hydroxylation, along with the chemical and biochemical consequences of this subtle but abundant posttranslational modification.  相似文献   

17.
18.
19.
Prolyl 4-hydroxylases (P4Hs) are members of the Fe2+ and 2-oxoglutarate- dependent oxygenases family, which play central roles in the collagen stabilization, hypoxia sensing, and translational regulation in eukaryotes. Thus far, nothing is known about the role of P4Hs in development and pathogenesis in oomycetes. Here we show that the Phytophthora capsici genome contains five putative prolyl 4-hydroxylases. In mycelia, all P4Hs were downregulated in response to hypoxia, but the expression of PcP4H1 was most affected. Strikingly, Pc4H1 was upregulated more than 110 fold at the onset of infection, and Pc4H5 was upregulated seven fold, while the expression of other P4H's were unchanged. Similar to well-characterized P4H proteins, the crystallographic structure of PcP4H1 contains a highly conserved double-stranded β-helix core fold and catalytic residues. However, the binding affinity of 2-oxoglutarate to PcP4H1 is very low. The extended C-terminal α-helix bundle and longer β2-β3 disordered substrate binding loop may help in confirming the peptide target of this enzyme.  相似文献   

20.
A fluorogenic substrate for vertebrate collagenase and gelatinase, Dnp-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2, was designed using structure-activity data obtained from studies with synthetic inhibitors and other peptide substrates of collagenase. Tryptophan fluorescence was efficiently quenched by the NH2-terminal dinitrophenyl group, presumably through resonance energy transfer. Increased fluorescence accompanied hydrolysis of the peptide by collagenase or gelatinase purified from culture medium of porcine synovial membranes or alkali-treated rabbit corneas. Amino acid analysis of the two product peptides showed that collagenase and gelatinase cleaved at the Gly-Leu bond. The peptide was an efficient substrate for both enzymes, with kcat/Km values of 5.4 microM-1 h-1 and 440 microM-1 h-1 (37 degrees C, pH 7.7) for collagenase and gelatinase, respectively. Under the same conditions, collagenase gave kcat/Km of about 46 microM-1 h-1 for type I collagen from calf skin. Since both enzymes exhibited similar Km values for the synthetic substrate (3 and 7 microM, respectively), the higher catalytic efficiency of gelatinase reflects predominantly an increase in kcat. Both enzymes were inhibited by HSCH2(R,S)CH[CH2CH(CH3)2]CO-L-Phe-L-Ala-NH2 in this assay (50% inhibition at 20 nM and less than 1 nM for collagenase and gelatinase, respectively). Soluble type I collagen was a competitive inhibitor of peptide hydrolysis by collagenase (KI = 0.8 microM) and exhibited mixed inhibition of gelatinase (KI = 0.3 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号