首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ubiquitin-dependent proteolysis is activated in skeletal muscle atrophying in response to various catabolic stimuli. Previous studies have demonstrated activation of ubiquitin conjugation. Because ubiquitination can also be regulated by deubiquitinating enzymes, we used degenerate oligonucleotides derived from conserved sequences in the ubiquitin-specific protease (UBP) family of deubiquitinating enzymes in RT-PCR with skeletal muscle RNA to amplify putative deubiquitinating enzymes. We identified USP19, a 150-kDa deubiquitinating enzyme that is widely expressed in various tissues including skeletal muscle. Expression of USP19 mRNA increased by approximately 30-200% in rat skeletal muscle atrophying in response to fasting, streptozotocin-induced diabetes, dexamethasone treatment, and cancer. Increased mRNA levels during fasting returned to normal with refeeding, but 1 day later than the normalization of rates of proteolysis and coincided instead with recovery of muscle mass. Indeed, in all catabolic treatments, USP19 mRNA was inversely correlated with muscle mass and provided an index of muscle mass that may be useful in many pathological conditions, using small human muscle biopsies. The increased expression of this deubiquitinating enzyme under conditions of increased proteolysis suggests that it may play a role in regeneration of free ubiquitin either coincident with or after proteasome-mediated degradation of substrates. USP19 may also be involved in posttranslational processing of polyubiquitin produced de novo in response to induction of the polyubiquitin genes seen under these conditions. Deubiquitinating enzymes thus appear involved in muscle wasting and implicate a widening web of regulation of genes in the ubiquitin system in this process.  相似文献   

3.
4.
The activity of the ubiquitin-dependent proteolytic system in differentiated tissues under basal conditions remains poorly explored. We measured rates of ubiquitination in rat tissue extracts. Accumulation of ubiquitinated proteins increased in the presence of ubiquitin aldehyde, indicating that deubiquitinating enzymes can regulate ubiquitination. Rates of ubiquitination varied fourfold, with the highest rate in the testis. We tested whether ubiquitin-activating enzyme (E1) or ubiquitin-conjugating enzymes (E2s) could be limiting for conjugation. Immunodepletion of the E2s UBC2 or UBC4 lowered rates of conjugation similarly. Supplementation of extracts with excess UBC2 or UBC4, but not E1, stimulated conjugation. However, UBC2-stimulated rates of ubiquitination still differed among tissues, indicating that tissue differences in E3s or substrate availability may also be rate controlling. UBC2 and UBC4 stimulated conjugation half-maximally at concentrations of 10-50 and 28-44 nM, respectively. Endogenous tissue levels of UBC2, but not UBC4, appeared saturating for conjugation, suggesting that in vivo modulation of UBC4 levels can likely control ubiquitin conjugation. Thus the pool of ubiquitin conjugates and therefore the rate of degradation of proteins by this system may be controlled by E2s, E3s, and isopeptidases. The regulation of the ubiquitin pathway appears complex, but precise.  相似文献   

5.
The ubiqutin-proteasome system is the major pathway by which cells target proteins for degradation in a specific manner. The E3 ubiquitin ligase, which brings targeted proteins (substrates) and activated ubiquitin in close proximity, enabling covalent conjugation of ubiquitin to the substrate, is an essential component of this system. Of the E3 ligases, the cullin (CUL) ligases are of high interest because of their capacity to form multiple distinct E3 complexes to ubiquitinate a potentially large number of substrates. Of the six closely related cullins, very little is known about how specific substrates are recruited to CUL4-dependent ligases. A recent paper in Nature Cell Biology may shed some light on this issue as well as on the function of DDB1, a damaged-DNA binding protein that has long been associated with DNA repair.  相似文献   

6.
泛素蛋白酶体途径及其对植物生长发育的调控   总被引:3,自引:1,他引:2  
泛素蛋白酶体途径主要由泛素活化酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成。泛素活化酶首先激活泛素分子,然后把泛素转移到泛素结合酶上。泛素结合酶结合泛素蛋白连接酶并把泛素转移到底物蛋白上使底物泛素化,或把泛素转移到泛素蛋白连接酶再使底物泛素化。泛素化的蛋白通常通过26S蛋白酶体进行降解。初步的研究结果表明,植物生长发育的很多方面受泛素蛋白酶体介导的蛋白降解途径的调控。  相似文献   

7.
泛素蛋白酶体途径及其对植物生长发育的调控   总被引:1,自引:0,他引:1  
宋素胜  谢道昕 《植物学报》2006,23(5):564-577
泛素蛋白酶体途径主要由泛素活化酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成。泛素活化酶首先激活泛素分子, 然后把泛素转移到泛素结合酶上。泛素结合酶结合泛素蛋白连接酶并把泛素转移到底物蛋白上使底物泛素化, 或把泛素转移到泛素蛋白连接酶再使底物泛素化。泛素化的蛋白通常通过26S蛋白酶体进行降解。初步的研究结果表明, 植物生长发育的很多方面受泛素蛋白酶体介导的蛋白降解途径的调控。  相似文献   

8.
9.
Posttranslational modifications of proteins by small polypeptides including ubiquitination, neddylation (related to ubiquitin (RUB) conjugation), and sumoylation are implicated in plant growth and development, and they regulate protein degradation, location, and interaction with other proteins. Ubiquitination mediates the selective degradation of proteins by the ubiquitin (Ub)/proteasome pathway. The ubiquitin-like protein RUB is conjugated to cullins, which are part of a ubiquitin E3 ligase complex that is involved in auxin hormonal signaling. Sumoylation, by contrast, is known for its involvement in guiding protein interactions related to abiotic and biotic stresses and in the regulation of flowering time. ATG8/ATG12-mediated autophagy influences degradation and recycling of cellular components. Other ubiquitin-like modifiers (ULPs) such as homology to Ub-1, ubiquitin-fold modifier 1, and membrane-anchored Ub-fold are also found in Arabidopsis. ULPs share similar three-dimensional structures and a conjugation system, including E1 activating enzymes, E2 conjugation enzymes, and E3 ligases, as well as proteases for deconjugation and recycling of the tags. However, each of the ULP posttranslational modifications possesses its own specific enzymes and modifies its specific targets selectively. This review discusses recent findings on ubiquitination and ubiquitin-like modifier processes and their roles in the posttranslational modification of proteins in Arabidopsis.  相似文献   

10.
植物泛素/26S蛋白酶体途径研究进展   总被引:6,自引:0,他引:6  
泛素/26S蛋白酶体途径是最重要的,有高度选择性的蛋白质降解途径,由泛素激活酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成,参与调控植物生长发育的多个方面。泛素蛋白酶体途径参与植物体内的众多生理过程,如植物激素信号,光形态建成、自交不亲和反应和细胞周期等。本文就泛素/26S蛋白酶体途径以及在植物生长发育中的作用的研究近况做一综述。  相似文献   

11.
In the multienzyme ubiquitin-dependent proteolytic pathway, conjugation of ubiquitin to target proteins serves as a signal for protein degradation. Rabbit reticulocytes possess a family of proteins, known as E2's, that form labile ubiquitin adducts by undergoing transthiolation with the ubiquitin thiol ester form of ubiquitin activating enzyme (E1). Only one E2 appears to function in ubiquitin-dependent protein degradation. The others have been postulated to function in regulatory ubiquitin conjugation. We have purified and characterized a previously undescribed E2 from rabbit reticulocytes. E2(230K) is an apparent monomer with a molecular mass of 230 kDa. The enzyme forms a labile ubiquitin adduct in the presence of E1, ubiquitin, and MgATP and catalyzes conjugation of ubiquitin to protein substrates. Exogenous protein substrates included yeast cytochrome c(Km = 125 mu M; kcat approximately 0.37 min-1) and histone H3 (Km less than 1.3 mu M; kcat approximately 0.18 min-1) as well as lysozyme, alpha-lactalbumin, and alpha-casein. E2(230K) did not efficiently reconstitute Ub-dependent degradation of substrates that it conjugated, either in the absence or in the presence of the ubiquitin-protein ligase that is involved in degradation. E2(230K) may thus be an enzyme that functions in regulatory Ub conjugation. Relative to other E2's, which are very iodoacetamide sensitive, E2(230K) was more slowly inactivated by iodoacetamide (k(obs) = 0.037 min-1 at 1.5 mM iodoacetamide; pH 7.0, 37 degrees C). E2(230K) was also unique among E2's in being subject to inactivation by inorganic arsenite (k(i)max = 0.12 min-1; K(0.5) = 3.3 mM; pH 7.0, 37 degrees C). Arsenite is considered to be a reagent specific for vicinal sulfhydryl sites in proteins, and inhibition is usually rapidly reversed upon addition of competitive dithiol compounds. Inactivation of E2(230K) by arsenite was not reversed within 10 min after addition of dithiothreitol at a concentration that blocked inactivation if it was premixed with arsenite; inactivation is therefore irreversible or very slowly reversible. We postulate that a conformation change of E2(230K) may be rate-limiting for interaction of enzyme thiol groups with arsenite.  相似文献   

12.
A novel protein modification pathway related to the ubiquitin system.   总被引:22,自引:2,他引:20       下载免费PDF全文
Ubiquitin conjugation is known to target protein substrates primarily to degradation by the proteasome or via the endocytic route. Here we describe a novel protein modification pathway in yeast which mediates the conjugation of RUB1, a ubiquitin-like protein displaying 53% amino acid identity to ubiquitin. We show that RUB1 conjugation requires at least three proteins in vivo. ULA1 and UBA3 are related to the N- and C-terminal domains of the E1 ubiquitin-activating enzyme, respectively, and together fulfil E1-like functions for RUB1 activation. RUB1 conjugation also requires UBC12, a protein related to E2 ubiquitin-conjugating enzymes, which functions analogously to E2 enzymes in RUB1-protein conjugate formation. Conjugation of RUB1 is not essential for normal cell growth and appears to be selective for a small set of substrates. Remarkably, CDC53/cullin, a common subunit of the multifunctional SCF ubiquitin ligase, was found to be a major substrate for RUB1 conjugation. This suggests that the RUB1 conjugation pathway is functionally affiliated to the ubiquitin-proteasome system and may play a regulatory role.  相似文献   

13.
14.
15.
16.
The conjugation of ubiquitin, a 76-amino-acid peptide, to a protein substrate provides a tag that either marks the labelled protein for degradation or modulates its function. The process of protein ubiquitylation--which is catalysed by coordinated enzymatic reactions that are mediated by enzymes known as E1, E2 and E3--has an important role in the modulation of immune responses. Importantly, protein ubiquitylation is a reversible process, and removal of ubiquitin molecules is mediated by de-ubiquitylating enzymes: for example, A20, which has been implicated in the regulation of immune responses. In addition, the conjugation of ubiquitin-like molecules, such as ISG15 (interferon-stimulated protein of 15 kDa), to proteins is also involved in immune regulation. This Review covers recent progress in our understanding of protein ubiquitylation in the immune system.  相似文献   

17.
Polyubiquitin (Ub) chains linked through Lys-48-Gly-76 isopeptide bonds represent the principal signal by which substrates of the Ub-dependent protein degradation pathway are targeted to the 26 S proteasome, but the mechanism(s) whereby these chains are assembled on substrate proteins is poorly understood. Nor have assembly mechanisms or definitive functions been assigned to polyubiquitin chains linked through several other lysine residues of ubiquitin. We show that rabbit reticulocyte lysate harbors enzymatic components that catalyze the assembly of unanchored Lys-29-linked polyubiquitin chains. This reaction can be reconstituted using the ubiquitin-conjugating enzyme (E2) known as UbcH5A, a 120-kDa protein(s) that behaves as a ubiquitin-protein ligase (E3), and ubiquitin-activating enzyme (E1). The same partially purified E3 preparation also catalyzes the assembly of unanchored chains linked through Lys-48. Kinetic studies revealed a K(m) of approximately 9 microM for the acceptor ubiquitin in the synthesis of diubiquitin; this value is similar to the concentration of free ubiquitin in most cells. Similar kinetic behavior was observed for conjugation to Lys-48 versus Lys-29 and for conjugation to tetraubiquitin versus monoubiquitin. The properties of these enzymes suggest that there may be distinct pathways for ubiquitin-ubiquitin ligation versus substrate-ubiquitin ligation in vivo.  相似文献   

18.
The recombinant yeast RAD6 and CDC34 gene products were expressed in Escherichia coli extracts and purified to apparent homogeneity. The physical and catalytic properties of RAD6 and CDC34 were similar but distinct from their putative rabbit reticulocyte homologs, E2(20k) and E2(32k), respectively. Like their reticulocyte counterparts, RAD6 and CDC34 are bifunctional enzymes competent in both ubiquitin:protein ligase (E3)-independent and E3-dependent conjugation reactions. RAD6 and E2(20k) exhibit marked specificity for the conjugation of core histones and catalyze the processive ligation of up to three ubiquitin moieties directly to such model substrates. RAD6 differed from its putative E2(20k) homolog in exhibiting simple saturation behavior in the kinetics of histone conjugation and in being unable to distinguish kinetically between core histones H2A and H2B, yielding identical values of kcat (1.9 min-1) and Km (20 microM). A slow rate of multiubiquitination involving formation of extended ubiquitin homopolymers on the histones was also observed with RAD6 and E2(20k). Comparison of conjugate patterns among native, reductively methylated, and K48R ubiquitin variants demonstrated that the linkage between ubiquitin moieties formed by E2(20k) and RAD6 was not through Lys-48 of ubiquitin, the site previously demonstrated as a strong signal for degradation of the target protein. In contrast, CDC34 differs from its putative homolog, E2(32k), in showing a specificity for conjugation to bovine serum albumin rather than to core histones. Both CDC34 and E2(32k) exhibit a marked kinetic selectivity for processive multiubiquitination via Lys-48 of ubiquitin. Calculations based on a model ubiquitin conjugation reaction indicated that E2(32k) and CDC34 preferentially catalyzed multiubiquitination over ligation of the polypeptide directly to target proteins. Formation of such multiubiquitin homopolymers by E2(32k) and CDC34 suggests these enzymes may commit their respective target proteins to degradation via an E3-independent pathway.  相似文献   

19.
Endoplasmic reticulum-associated degradation (ERAD) represents the primary means of quality control within the secretory pathway. Critical to this process are ubiquitin protein ligases (E3s) which, together with ubiquitin conjugating enzymes (E2s), mediate the ubiquitylation of proteins targeted for degradation from the ER. In this chapter we review our knowledge of both Saccharomyces cerevisiae and mammalian ERAD ubiquitin ligases. We focus on recent insights into these E3s, their associated proteins and potential mechanisms of action.  相似文献   

20.
Owing to the intensive research activity on protein synthesis, little attention was paid in the 1950s and 1960s to protein degradation. However, work by my group and others between 1970 and 1990 led to the identification of the ubiquitin-dependent degradation system. We found that this system contains three types of enzymes: E1 ubiquitin--activating enzyme, E2 ubiquitin--carrier enzyme and E3 ubiquitin--protein ligase. The sequential action of these enzymes leads to conjugation of ubiquitin to proteins and then in most cases to their degradation. This review briefly tells the story of how this pathway was discovered describing the main findings that during the years allowed us to draw the complex picture we have now.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号