首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Platelet-derived growth factor-BB (PDGF-BB) is a potent mitogen and chemoattractant for vascular smooth muscle cells (VSMC). To understand its mitogenic and chemotactic signaling events, we studied the role of cytosolic phospholipase A(2) (cPLA(2)) and the Jak/STAT pathway. PDGF-BB induced the expression and activity of cPLA(2) in a time-dependent manner in VSMC. Arachidonyl trifluoromethyl ketone, a potent and specific inhibitor of cPLA(2), significantly reduced PDGF-BB-induced arachidonic acid release and DNA synthesis. PDGF-BB stimulated tyrosine phosphorylation of Jak-2 in a time-dependent manner. In addition, PDGF-BB activated STAT-3 as determined by its tyrosine phosphorylation, DNA-binding activity, and reporter gene expression, and these responses were suppressed by AG490, a selective inhibitor of Jak-2. AG490 and a dominant-negative mutant of STAT-3 also attenuated PDGF-BB-induced expression of cPLA(2,) arachidonic acid release, and DNA synthesis in VSMC. Together, these results suggest that induction of expression of cPLA(2) and arachidonic acid release are involved in VSMC growth in response to PDGF-BB and that these events are mediated by Jak-2-dependent STAT-3 activation.  相似文献   

5.
6.
To understand the role of redox-sensitive mechanisms in vascular smooth muscle cell (VSMC) growth, we have studied the effect of N-acetylcysteine (NAC), a thiol antioxidant, and diphenyleneiodonium (DPI), a potent NADH/NADPH oxidase inhibitor, on serum-, platelet-derived growth factor BB-, and thrombin-induced ERK2, JNK1, and p38 mitogen-activated protein (MAP) kinase activation; c-Fos, c-Jun, and JunB expression; and DNA synthesis. Both NAC and DPI completely inhibited agonist-induced AP-1 activity and DNA synthesis in VSMC. On the contrary, these compounds had differential effects on agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression. NAC inhibited agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression except for platelet-derived growth factor BB-induced ERK2 activation. In contrast, DPI only inhibited agonist-induced p38 MAP kinase activation and c-Fos and JunB expression. Antibody supershift assays indicated the presence of c-Fos and JunB in the AP-1 complex formed in response to all three agonists. In addition, cotransfection of VSMC with expression plasmids for c-Fos and members of the Jun family along with the AP-1-dependent reporter gene revealed that AP-1 with c-Fos and JunB composition exhibited a higher transactivating activity than AP-1 with other compositions tested. All three agonists significantly stimulated reactive oxygen species production, and this effect was inhibited by both NAC and DPI. Together, these results strongly suggest a role for redox-sensitive mechanisms in agonist-induced ERK2, JNK1, and p38 MAP kinase activation; c-Fos, c-Jun, and JunB expression; AP-1 activity; and DNA synthesis in VSMC. These results also suggest a role for NADH/NADPH oxidase activity in some subset of early signaling events such as p38 MAP kinase activation and c-Fos and JunB induction, which appear to be important in agonist-induced AP-1 activity and DNA synthesis in VSMC.  相似文献   

7.
Thrombin is a potent mitogen for vascular smooth muscle cells (VSMC). To understand its mitogenic signaling events, we have studied the role of calcium-independent phospholipase A2 (iPLA2). Without affecting its levels, thrombin increased iPLA2 activity in a time-dependent manner in VSMC. Thrombin also induced arachidonic acid release and DNA synthesis by about 2-fold as compared with control. Down-regulation of iPLA2 activity by its specific inhibitor, bromoenol lactone, or its expression by antisense oligonucleotides, significantly reduced thrombin-induced arachidonic acid release and DNA synthesis in VSMC. To learn the mechanism of thrombin-stimulated iPLA2 activity, we next tested the role of p38 MAPK. Thrombin stimulated p38 MAPK phosphorylation and activity in a time-dependent manner in VSMC. Inhibition of p38 MAPK activity by SB203580 and SB202190 resulted in decreased iPLA2 activity, arachidonic acid release, and DNA synthesis induced by thrombin in VSMC. Together, these results for the first time demonstrate that iPLA2 plays a role in thrombin-induced arachidonic acid release and growth in VSMC and that these responses are mediated by p38 MAPK.  相似文献   

8.
9.
10.
Platelet-derived growth factor BB (PDGF-BB) induced cyclin A expression and CDK2 activity in vascular smooth muscle cells (VSMC). Inhibition of nuclear factors of activated T cell (NFAT) activation by cyclosporin A (CsA) and VIVIT suppressed PDGF-BB-induced cyclin A expression and CDK2 activity, resulting in blockade of VSMC in the G(1) phase. In addition, CsA- and VIVIT-mediated inhibition of NFATs and small interfering RNA-targeted down-regulation of cyclin A levels suppressed PDGF-BB-induced VSMC DNA synthesis. PDGF-BB also induced cyclin A mRNA levels in VSMC in an NFAT-dependent manner. Cloning and bioinformatic analysis of rat cyclin A promoter revealed the presence of NFAT-binding elements, and PDGF-BB induced the binding of NFATs to these regulatory sequences in a CsA- and VIVIT-sensitive manner. Chromatin immunoprecipitation analysis showed that NFATc1 binds to the cyclin A promoter in response to PDGF-BB in a VIVIT-sensitive manner. Furthermore, PDGF-BB induced cyclin A promoter-luciferase reporter gene activity in VSMC, and it was inhibited by both CsA and VIVIT. Balloon injury induced cyclin A expression and CDK2 activity in rat carotid arteries, and these responses were also blocked by VIVIT. In addition, VIVIT attenuated balloon injury-induced SMC proliferation, resulting in reduced restenosis. Down-regulation of NFATc1 by its small interfering RNA inhibited PDGF-BB-induced cyclin A expression and DNA synthesis both in rat and human VSMC. Together, these findings demonstrate that the cyclin A-CDK2 complex may be a potential effector of NFATs, specifically NFATc1, in mediating SMC multiplication leading to neointima formation. Therefore, NFATs may be used as target molecules for the development of therapeutic agents against vascular diseases such as restenosis.  相似文献   

11.
12.
13.
14.
Herein, we investigated the activity of mitogen-activated protein kinase (MAPK), a key component of downstream signaling events, which is activated subsequent to platelet-derived growth factor (PDGF)-BB stimulation. Specifically, p42(MAPK) activity peaked 60 min after addition of PDGF-BB, declined thereafter, and was determined not to be a direct or necessary component of glycosaminoglycan (GAG) synthesis. PDGF-BB also activated MAPK kinase 2 (MAPKK2) but had no effect on MAPKK1 and Raf-1 activity. Chemical inhibition of Janus kinase, phosphatidylinositol 3-kinase, Src kinase, or tyrosine phosphorylation inhibition of the PDGF beta-receptor (PDGFR-beta) did not abrogate PDGF-BB-induced p42(MAPK) activation or its threonine or tyrosine phosphorylation. A dominant negative cytoplasmic receptor for hyaluronan-mediated motility variant 4 (RHAMMv4), a regulator of MAPKK-MAPK interaction and activation, did not inhibit PDGF-BB-induced p42(MAPK) activation nor did a construct expressing PDGFR-beta with cytoplasmic tyrosines mutated to phenylalanine. However, overexpression of a dominant negative PDGFR-beta lacking the cytoplasmic signaling domain abrogated p42(MAPK) activity. These results suggest that PDGF-BB-mediated activation of p42(MAPK) requires the PDGFR-beta but is independent of its tyrosine phosphorylation.  相似文献   

15.
Many of the signaling events in VSMC stimulated by angiotensin II (AngII) are mediated by members of the mitogen-activated protein kinase (MAPK) family, including p38 MAPK. The role of p38 MAPK in AngII-mediated cell cycle regulation is poorly understood. Therefore, we examined the involvement of p38 MAPK signaling in AngII-stimulated DNA synthesis, phosphorylation of the retinoblastoma protein (Rb), and expression of the G1-phase cyclin D1 in human coronary artery smooth muscle cells (CASMC). AngII (1 microM) stimulated p38 MAPK and ERK1/2 activation. Pretreatment with the p38 MAPK inhibitors SB203580 (10 microM) (SB) or SKF-86002 (10 microM) (SKF) potently inhibited AngII-induced p38 MAPK activation, but enhanced AngII-mediated ERK1/2 activation. AngII-induced-phosphorylation of Rb (Ser 795 and Ser 807/811), -cyclin D1 expression, and -DNA synthesis was also markedly enhanced by pharmacological inhibition of the p38 MAPK pathway. The present study demonstrates that p38 MAPK negatively regulates AngII-induced ERK1/2 activity, Rb phosphorylation, cyclin D1 expression, and DNA-synthesis in human CASMC. These findings support an important role for p38 MAPK in modulating AngII-mediated VSMC hyperplasia.  相似文献   

16.
In atherosclerosis, abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role to form fibroproliferative lesions and platelet-derived growth factor (PDGF)-BB is one of the most potent chemoattractants and proliferative factors for VSMCs. Taurine, sulfur-containing beta-amino acid, has been considered to prevent the development of atherosclerosis, although the molecular mechanism remains obscure. Previously, we demonstrated that taurine significantly suppressed PDGF-BB-induced cell proliferation, DNA synthesis, immediate-early gene expressions and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in VSMCs. The present study was aimed at elucidating the precise molecular mechanism of taurine in PDGF-BB signaling pathway. We showed that taurine significantly suppressed PDGF-BB-induced phosphorylation of PDGF-beta receptor and activation of its downstream signaling molecules such as Ras, MAPK/ERK kinase (MEK)1/2 and Akt. Because taurine did not attenuate phorbol 12-myristate 13-acetate (PMA)-induced PDGF-beta receptor-independent ERK1/2 phosphorylation, we further investigated the suppressive mechanism of taurine in PDGF-beta receptor level. Although taurine did not directly affect PDGF receptor autophosphorylation in vitro, taurine promoted PDGF-beta receptor dephosphorylation and restored PDGF-BB-induced suppression of protein tyrosine phosphatase (PTPase) activity. Taken together, we propose that taurine could prevent or delay the progression of atherosclerosis by PTPase-mediated suppression of PDGF-beta receptor phosphorylation, and by decreasing the activation of its downstream signaling molecules in VSMCs.  相似文献   

17.
18.
19.
20.
Signal characteristics of G protein-transactivated EGF receptor.   总被引:24,自引:2,他引:22       下载免费PDF全文
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7 cells. Transient expression of either Gq- or Gi-coupled receptors in COS-7 cells allowed GPCR agonist-induced EGFR transactivation, and lysophosphatidic acid (LPA)-generated signals involved the docking protein Gab1. The increase in SHC tyrosine phosphorylation and MAPK stimulation through both Gq- and Gi-coupled receptors was reduced strongly upon selective inhibition of EGFR function. Inhibition of phosphoinositide 3-kinase did not affect GPCR-induced stimulation of EGFR tyrosine phosphorylation, but inhibited MAPK stimulation, upon treatment with both GPCR agonists and low doses of EGF. Furthermore, the Src tyrosine kinase inhibitor PP1 strongly interfered with LPA- and EGF-induced tyrosine phosphorylation and MAPK activation downstream of EGFR. Our results demonstrate an essential role for EGFR function in signaling through both Gq- and Gi-coupled receptors and provide novel insights into signal transmission downstream of EGFR for efficient activation of the Ras/MAPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号