首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To examine in more detail the mechanisms of cocklebur (Xanthium pennsylvanicum Wallr.) seed germination and rice (Oryza sativa L. cv. Sasanishiki) coleoptile elongation that were responsive to both C2H4 and CO2, the effects of NBD (2,5-norbornadiene), a cyclic olefin known as a competitive inhibitor of C2H4, on those phenomena were tested under various conditions. NBD strongly inhibited germination of cocklebur seeds and their axial and cotyledonary growth. The NBD effects were significantly negated by endogenously evolved and exogenously applied CO2 regardless of incubation temperature. Similarly, the inhibitory NBD effect was negated by C2H4 at 23°C, but at 33°C a low concentration (3 1/L) of C2H4 rather enhanced the inhibitory NBD effect. This phenomenon reflected the growth responses of the tip zone of axial tissues in cocklebur seeds to NBD and C2H4, in which both gases were antagonistic in regulating the axial growth at 23°C but additive in inhibiting it at 33°C. Maximal negation of these inhibitory NBD effects was brought about by simultaneous application of CO2 and C2H4. Similarly, elongation of rice coleoptiles was suppressed by NBD, and when they were immature, its inhibitory action was counteracted by both C2H4 and CO2, especially during simultaneous application. However, the inhibitory NBD effect was completely negated by C2H4 applied alone at concentrations above 500 1/L regardless of the physiological age of coleoptiles. These inhibitory NBD effects are additional evidence suggesting that C2H4 acts as a growth regulator in both cocklebur seed germination and rice coleoptile elongation. That NBD was capable of counteracting CO2 action in some cases but was incapable of negating inhibitory C2H4 action, such as that observed in cocklebur seeds, suggests that NBD acts with some side effects besides being a competitive inhibitor of C2H4 actions.  相似文献   

2.
Effects of C2H4 and CO2 on respiration of pre-soaked upper cocklebur(Xanthium pennsylvanicum Wallr.) seeds during a pre-germinationperiod were examined in relation to effects of the two gaseson germination. At 33?C, cocklebur seed germination was greatlystimulated. This high temperature-stimulated germination wasseverely inhibited by C2H4, but not by CO2, although both gasesstimulated germination at 23?C. C2H4 promoted seed respirationat 23?C, but its promotive effect decreases with increasingtemperature and disappeared at about 35?C, while CO2 stimulatedrespiration regardless of temperature. CO2 augmented the operationof the CN-sensitive, cytochrome path (CP) regardless of temperature,resulting in an increase in the ratio of the CP flux to a CN-resistant,alternative path (AP) flux. On the other hand, C2H4 augmentedthe operation of both paths, particularly of the AP, at 23?C,where it promoted germination. However, at 33?C where germinationis suppressed by C2H4, C2H4 preferentially stimulated respirationvia the AP, thus leading to an extremely high ratio of AP toCP. The inhibitory effect of C2H4 on germination at 33?C disappearedcompletely in enriched O2, under which conditions CP is knownto be augmented. At 23?C, CO2 and C2H4 acted independently incontrolling seed respiration, but they were antagonistic at33?C. The independent action appeared when the AP flux was verylow relative to the CP flux, while the antagonism appeared whenthe AP flux had risen. This differential action of the two gasesat different temperatures was also observed in the ATP level,adenylate pool size and energy charge of the axial tissues.These results suggest that the germination-controlling actionsof both CO2 and C2H4 are fundamentally manifested through themodification of respiratory systems. However, the germination-inhibitingeffect of C2H4 at 33 ?C was not removed by inhibitors of AP,and there was little difference in the adenylate compounds betweenthe C2H4-treated and non-treated seeds at 33?C. Therefore, thephysiological action of C2H4 can not be explained only in termsof regulation of the respiratory system. (Received January 24, 1986; Accepted November 17, 1986)  相似文献   

3.
The effect of propyl-gallate (PG) and benzohydroxamic acid (BHAM),inhibitors of cyanide-resistant, alternative respiration path(AP), on germination were examined using after-ripened upperand lower cocklebur (Xanthium pennsylvanicum Wallr.) seeds pre-soakedat 23?C for various periods. Germination was strongly suppressedby PG or BHAM at concentration above 2 mM. However, germinationwas enhanced by low concentrations of PG or BHAM (0.25 or 0.5mM) which reduced some portions of AP operation. Similarly,the high temperature-induced germination of pre-soaked upperseeds was promoted by the same low concentration range of PGor BHAM, in which PG and BHAM were effective only when appliedat the start of high temperature incubation. The inhibitionof germination by C2H4 at high temperature occurred only whenseeds were exposed to C2H4 during the earlier period of hightemperature incubation, and delayed application tended to promotetheir germination, although most of germinated seeds did notexhibit the normal germination behaviour of predominant radicleprotrusion. If the upper seeds had been subjected to a short-timepre-soaking, the inhibition of high temperature-induced germinationby C2H4 was prevented by the low concentrations of PG or BHAM,although the germination restored was mostly an abnormal, predominantlycotyldonary growth, suggesting that the germination inhibitionby C2H4 may be involved in some step of axial growth or in thegrowth of some specific axial zone. The lower concentrationsof PG or BHAM were promotive to the axial growth even at 33?C.Based on these results, the involvement of AP in cocklebur seedgerminaton is discussed in relation to the differential growthof axial and cotyledonary tissues. (Received May 2, 1986; Accepted October 27, 1986)  相似文献   

4.
Esashi, Y., Hase, S. and Kojima, K. 1987. Light actions in thegermination of cocklebur seeds. V. Effects of ethylene, carbondioxide and oxygen on germination in relation to light.–J.exp. Bot. 38: 702–710. Effects of ethylene, CO2 and O2 on the germination of after-ripenedupper cocklebur (Xanthium pennsylvanicum Wallr.) seeds wereexamined in relation to pre-irradiation by red (R) or far-red(FR) light In order to remove the pre-existing Pfr, seeds weresoaked in the dark for various periods prior to light irradiationand gas treatments. Regardless of light, 0.3 Pa C2H4 promotedgermination at 23 ?C, but it strongly inhibited germinationwhen applied at 33 ?C, the optimal temperature for the germinationof this seed. However, delayed application of C2H4 during 33?C incubation stimulated germination independently of lightin a similar manner to that seen at 23 ?C. It is, therefore,suggested that the germination-regulating action of C2H4 iscompletely independent of phytochrome. In contrast, the germination-promoting effect of 3–0 kPaCO2 was pronounced only when the seeds were previously irradiatedby R, regardless of temperature, suggesting that CO2 actionto promote germination depends upon Pfr. A synergism betweenCO2 and C2H4 at 23 ?C was observed only in the germination ofseeds pre-irradiated by R, while at 33 ?C an antagonism occurredindependently of light. The stimulation of C2H4 production byCO2 was most striking in the cotyledonary tissue pre-irradiatedby R. However, the R-dependent enhancement of CO2-stimulatedC2H4 production was negated by the subsequent FR and it wasnot found in the presence of 1-aminocyclopropane-1-carboxylicacid (ACC). Moreover, the R dependency of the germination-promotingCO2 effect disappeared in the presence of C2H4. The R-dependentC2H4 production enhanced by CO2 may thus be involved, at leastpartially, in some step of conversion from methionine to ACC. The germination-promoting effect of C2H4, but not CO2, was enhancedby O2 enrichment regardless of light. However, the germination-promotingeffect of pure O2 itself appeared to depend upon pre-irradiationwith R Key words: Carbon dioxide, cocklebur seed, ethylene, far-red light, germination, oxygen, red light, Xanthium pennsyloanicum  相似文献   

5.
Abstract. Germination modes of lower seeds of cocklebur (Xanthium pennsylvanicum Wallr.) under different water stresses, prepared with mannitol solution, were examined in relation to gaseous factors. As the concentration of mannitol increased, germination was increasingly inhibited at a mode which was drawn by two straight lines having different slopes and meeting at an angle. One is a sharp line occurring at the lower concentrations of mannitol; the other is a gentle line occurring at higher concentrations of mannitol. The former reflected the growth response of axial tissues to mild water stress, whereas the latter reflected the growth response of cotyledonary tissues to severe water stress. The germination potential of cocklebur seeds increased with increasing temperature. Thus, the seeds were more resistant to water stress at higher than al lower temperatures. This increased germination potential under water stress resulted from the greater growth potential of axial tissues, but not cotyledonary tissues, at higher temperature. Increased O2 levels improved both the reduced axial and cotyledonary growth under water stress. Carbon dioxide predominantly enhanced axial growth under water stress, whereas C2H4 exclusively enhanced cotyledonary growth. Thus, these gases were effective in potentiating germination under water stress. When combined with each other, these gases caused more pronounced growth of the axial and cotyledonary tissues, leading to germination under more severe water stresses. Maximal axial and cotyledonary growth under water stress occurred in the simultaneous presence of CO2, C2H4 and O2, which allowed the germination at higher mannitol concentrations above 0.6 kmol m?3 From these results, it was suggested that cocklebur seeds would override water stress by depending upon both the Corresponding axial growth and the C2H4-responding cotyledonary growth.  相似文献   

6.
Abstract. The mechanism involved in a bimodal germination-temperature response in pre-soaked cocklebur (Xanthium pennsylvanicum Wallr.) seeds was studied with special reference to adenylate metabolism. Exposure to either low (optimal at 8°C) or high (optimal at 34°C) temperature which was effective in inducing the germination of the seeds brought about the accumulation of ATP in them. The ATP level remained unchanged at temperatures around 23°C. Pretreatment with KCN, stimulating germination even at 23°C, subsequently increased the ATP content, total adenylate pool and energy charge (EC) in the axial tissue prior to germination above those of the untreated controls. The lower the treatment temperature, the greater the inhibitory effect of KCN on ATP formation. An increase in germination following an increasing duration of pre-soaking at 8°C was comparable to increasing both the ATP content and total adenylate pool of axes, but not the EC value. Similarly, changes in germination following an increased exposure duration at 8°C correlated with changes in ATP content rather than EC value in the axes. Unlike the case of chilling, an increase in ATP level in response to 34°C was greater in the early period of water imbibition, during which times its germination-stimulating effect appeared more striking than in the later period, and it occurred without a concomitant rise in EC value because of the increased supply of AMP. Such a supply of AMP was reduced in the presence of benzohydroxamic acid or propyl gallale, inhibitors of an alternative respiratory pathway. It was thus concluded that both low temperature, coupled with warm temperature, and high temperature, by itself, can induce seed germination by increasing the ATP level as well as the total adenylate pool, but not the EC value, in the axial tissue. Further, that increases in both the ATP level and the adenylate pool especially are required for seed germination to proceed, probably depending on the activities of the cytochrome and alternative respiration pathways, respectively.  相似文献   

7.
The axial growth of de-coated cocklebur (Xanthium pennsylvanicumWallr.) seeds, whose axes were divided into 4 zones, was examinedin relation to the temperature-dependent shift of the effectof C2H4 on germination. At 23?C, where both C2H4 and CO2 stimulatedgermination, CO2 promoted the axial growth at the radicle tipzone, whereas C2H4 promoted growth in the proximal portion ofthe axis. At 33?C, C2H4 inhibited germination, and stronglysuppressed the growth at the radicle tip, whereas the effectof CO2 did not change. The inhibition of growth at the radicletip zone was alleviated by O2 enrichment, which also reversedthe inhibition of germination. It is thus apparent that thetemperature-dependent shift of the action of C2H4 is associatedwith a temperature-dependent responsiveness of the radicle tipzone to C2H4. Growth of the radicle tip zone was sensitive toNaN3, whereas the proximal portion was sensitive to benzohydroxamicacid, an inhibitor of alternative respiration, suggesting thatthere may be an increase in the operation of the alternativerespiration path along a gradient of axial tissue from the tiptowards the cotyledonary side. The effects of CO2 and C2H4 arediscussed in relation to the different respiratory activitiesin each axial zone of cocklebur seeds. (Received May 9, 1986; Accepted November 6, 1986)  相似文献   

8.
Respiration of nondormant upper cocklebur (Xanthium pensylvanicum Wallr.) seeds was enhanced by exogenous C2H4, proportionally to the concentration of C2H4 and the duration of presoaking of the seeds. Benzohydroxamic acid (BHM) and salicylhydroxamic acid (SHM), inhibitors of alternative respiration, inhibited both the germination of nondormant lower cocklebur seeds and the respiration of the upper seeds presoaked for periods of 12 to 30 hours. Both the growth and respiration of axial and cotyledonary tissues were also inhibited by BHM. Moreover, BHM inhibited both the C2H4-induced germination of the upper seeds and their C2H4-stimulated respiration; the inhibition occurred only with concomitant addition of C2H4 and BHM. The respiration of seeds with a secondary dormancy induced by presoaking for prolonged periods was markedly stimulated by C2H4 but not suppressed by BHM. It was suggested that the alternative respiration system may be involved in the normal germination process of cocklebur seeds, secondary dormancy may result from its inactivation, and C2H4 may exert its germination-promoting action by stimulating the alternative respiration. The effects of BHM and SHM can suggest but not prove the involvement of the alternative respiration in seed germination.  相似文献   

9.
Protein Synthesis in Dormant and Non-Dormant Cocklebur Seed Segments   总被引:1,自引:0,他引:1  
Using the axial and cotyledonary segments of lower cocklebur (Xanthium pensylvanicum Wallr.) seeds, protein synthesis as shown by incorporation of radioactive leucine was examined in relation to their dormant status. During the first 9 h of water imbibition, the protein synthesis was higher in the dormant axes than in the non-dormant, after- ripened ones. When imbibed for more than 12 h non-dormant axes had a higher activity than dormant ones. This was also the case with the cotyledonary segments. Cyctoheximide, an inhibitor of protein synthesis, blocked protein synthesis in the axial tissue regardless of its dormant status, and thereby inhibited germination of the non-dormant seeds. In the dormant seeds, however, cycloheximide at 3 mM slightly stimulated germination without stimulating the C2H4 production. Based on these results, it is suggested that in cocklebur seeds there may be some proteinaceous system which is involved in the maintenance of dormancy.  相似文献   

10.
Seed quality is a key critical component to produce well established and vigorous seedlings under cool soil (<10°C) conditions experienced in Western Canada. A simple, relatively quick germination assay is required to separate small differences in seed germination which can have a significant impact on seedling growth. It has long been established that phytohormones regulate seed germination: abscisic acid inhibits germination whereas gibberellins enhance germination. We investigated the effects of ABA, GA, ethylene and inhibitors of these phytohormones alone and in combination on the germination rate of a black and a yellow seed canola (Brassica napus) imbibed at 8°C. The effects of either saline solutions, osmotic solutions, fusicoccin or testa on the germination of canola seeds imbibed at 8°C were also investigated. This temperature is representative of the soil temperatures experienced in the early spring of Western Canada. The two canola seed lines, especially the yellow seed line, were very sensitive to increasing concentration of saline solutions at 8°C, but not at 23°C; however, iso-osmotic solutions that reduced water potential were more inhibitory. The seed coat (testa) including the endosperm was a major factor affecting the germination rate of the yellow seed line at 8°C, however, GA4+7 overcame the inhibitory effect of the testa, whereas ABA exacerbated it. Fusicoccin was more stimulatory to germination than GA4+7, however, unlike GA4+7, it was unable to overcome the inhibitory effect of paclobutrazol, a GA biosynthesis inhibitor. Fluridone, an ABA biosynthesis inhibitor, was unable to overcome the inhibitory effects of a saline solution suggesting that the inhibitory effect was not due to elevated ABA levels. Ethylene, a stimulator of germination did not appear to be involved in the germination of these two lines. Controlled deterioration at 35°C, 85% RH could be either partially or completely overcome by exogenous GA4+7. This study demonstrated the effect of hormones, salinity and testa on the germination of canola seeds under less than ideal environmental conditions.  相似文献   

11.
The role of the oxidative pentose phosphate (PP) pathway in the dormancy-breaking of cocklebur (Xanthium pennsylvanicum Wallr.) seeds was investigated. D-[1-14C]-glucose or D-[6-14C]-glucose was fed to dormant and non-dormant lower seeds or to their axial or cotyledonary segments which were imbibed for different durations, and C6/C1 ratios of respired 14CO2 as an index of the PP pathway activity were calculated. Contrary to expectation, there was no significant difference in the C6/C1 ratios between the dormant and non-dormant seeds or segments during a water imbition period of 24 h, although the PP pathway actually operated already in an early stage of water imbibition. Also concerning the activities of G6PDH and 6PGDH, the key enzymes of this pathway, no difference between the dormant and non-dormant seeds was found. It was thus concluded that, unlike other seeds, there is no contribution of the PP pathway to the regulation of dormancy of the cocklebur seed.  相似文献   

12.
Growth of segments of embryonic axes and cotyledons excisedfrom dormant or nondormant cocklebur (Xanthium pennsylvanicumWallr.) seeds and CO2 and C2H4 production in these segmentswere examined in relation to the effects of temperature, CO2and C2H4. Both the nondormant axes and cotyledons grew evenat low temperatures below 23°C, but the dormant ones failedto grow. There was only little difference in the CO2 evolutionbetween the nondormant and dormant ones, but both the axis andcotyledon segments from the dormant seeds exhibited little orno C2H4 productivity, unlike the nondormant ones, at low temperatures.However, a high temperature of 33°C caused rapid extensiongrowth and C22H4 production even in dormant axes and cotyledons. The inability of dormant axes and cotyledons to grow disappearedcompletely in the presence of C2H4 at fairly low concentrations.Removal of endogenous CO2 and C2H4 reduced the growth in bothaxes and cotyledons, while exogenous CO2 mainly enhaced axialgrowth although exogenous C2H4 strongly stimulated the growthof both organs. Regardless of the dormant status, however, maximumgrowth of these organs occurred when C2H4 was given togetherwith CO2. We suggest that dormancy in cocklebur seeds is dueto the lack of growing ability in both organs, caused by thelack of C2H4 productivity in both dormant axes and cotyledons,particularly in the former. (Received December 2, 1974; )  相似文献   

13.
A possible involvement of ß-cyanoalanine synthase(CAS: EC 4.4.1.9 [EC] ) in germination processes of seeds was demonstratedusing pre-soaked upper seeds of cocklebur (Xanthium pennsylvanicumWallr.). Pretreatment in anoxia not only with KCN but also cysteine,as the substrates for CAS, stimulated the subsequent germinationof cocklebur seeds in air. However, the effect of cysteine wasmanifested even in air when applied together with C2H4, andits effect was further enhanced in combination with KCN. Thegermination-stimulating effect of KCN was intensified by C2H4only when 02 was present. In contrast, serine, another substrateof CAS, was effective in air only when combined with C2H4 and/orKCN. The addition of cysteine greatly reduced the cyanogenicglycoside content of seeds, but increased HCN evolution. Onthe other hand, glutathione did not have any effect on cockleburseed germination, HCN evolution or bound cyanogen content, suggestingthat cysteine is not acting as a reducing reagent. It is suggestedthat CAS regulates the process of cocklebur seed germinationby the dual action of enlarging the pool of amino acids andsupplying sulphydryl bases, the latter being more determinatelyimportant. Serine is effective only via the former action, whilecysteine would act via both. Key words: Cyanide, cyanogenic glycoside, ß-cyanoalanine synthase, seed germination, Xanthium pennsylvanicum  相似文献   

14.
Non-dormant, lower seeds of cocklebur (Xanthium pensylvanicum Wallr.) germinated with unimodal flush after 20 and 36 h from the start of water imbibition at 33 and 23°C, respectively. At 28°C, however, germination occurred bimodally, the time of each peak coinciding with that at 23 and 33°C. This type of germination behavior was induced even at 33°C, when the seeds were contacted with some osmotica. Further, the application of different osmotica at 28°C caused a rhythmic multimodal germination with a period of about 16 h. It was suggested that an endogenous rhythmicity may be involved in the control of cocklebur seed germination.  相似文献   

15.
High O2 tensions, CO4, C2H4 and high temperatures were effectivenot only in breaking the dormancy of cocklebur (Xanthium pennsylvanicumWallr.) seeds but also in increasing the germination potentialof the nondormant but small seeds. There were few qualitativedifferences in response to these factors between the dormantand impotent seeds. Unlike CO2, however, enriched O2 and C2H4were stimulative even at the low temperature of 13°C. Germination induced by CO2, C2H4 and high temperature treatmentswas lowered when endogenously evolved C2H4 or CO2 was removed,whereas the effect of O2 enrichment was not affected by theirremoval. CO2 and high temperatures remarkably stimulated C2H4production, whereas O2 enrichment had no such effect. C2H4 productivity was lower in the dormant than non-dormantseeds, suggesting that the after-ripening is characterized byincreasing C2H4 production. (Received August 20, 1974; )  相似文献   

16.
Esashi, Y., Fuwa, Nn Kojima, K. and Hase, S. 1986. Light actionsin the germination of cocklebur seeds. IV. Disappearance ofred light-requirement for the germination of upper seeds subjectto anoxia, chilling, cyanide or azide pretreatmenL—J.exp. Bot. 37: 1652–1662. The effects on the germination of positively photoblastic uppercocklebur (X anthium pennsylvanicum Wallr.) seeds by pretreatingwith anoxia, chilling, cyanide or azide, which stimulates theirdark germination, were examined in relation to light actions.Prior to experiments, seeds were pre-soaked at 23 °C inthe dark for 1 or 2 weeks to remove the pre-existing Pfr. Whenthe prctreatment conditions were suboptimal for germinationinduction, the stimulating effects of the pretreatments on germinationduring a subsequent dark period at 23 °C were manifest onlywhen seeds were irradiated with red light before or after thepretreatment Red light promotion was reversed by blue or far-redlight treatment. However, both prc-chilling for 6 d at 8 °Cand prctreatment with 1· 5 mol m – 3 NaN3 for 2d could induce full germination without red light exposure.On the other hand, both pre-exposure to anoxia for 8 d and pretreatmentwith 30 mol m–3 KCN could induce the dark germinationonly when germination occurred at 33 °C which is known toaugment the ratio of an alternative respiration flux to a cytochromeone. Moreover, the dark germination in response to these inductionswere strongly inhibited by the inhibitors of alternative respiration,propyl gallate and benzohydroxamic acid, applied during a subsequentdark period. It was thus suggested that Pfr has some relationto the operation of two respiration systems of cocklebur seeds,but it is not indispensable to germination of this positivelyphotoblastic seed. Key words: Anoxia, azide, blue light, chilling cyanide, dark germination, far-red light, red light, seed germination, X anthium pennsylvanicum  相似文献   

17.
Interrelations between CO2 and C2H4 on promotion of seed germination were examined in more detail at 23°C with presoaked upper seeds of Xanthium pennsylvanicum Wallr. The germination-promoting effect of C2H4 decreased gradually as its application time was delayed during a soaking period, whereas CO2 was most promotive in application at 5 days of soaking, then its effect declined. CO2 and C2H4 were additive in earlier soaking periods and synergistic in later periods. Such changes in germination behavior in response to CO2 and/or C2H4 during a soaking period were closely associated with growth responsiveness of the axial tissues, but not of the cotyledonary ones. Growth responsiveness of axial tissues to CO2 or C2H4 disappeared finally during a soaking period, but their extinct responsiveness to any one of these gases was almost fully restored in the simultaneous presence of the other. The extinct responsiveness to CO2 was partially recovered by a preexposure to C2H4. This suggests that in the later period of soaking, unlike the case in a very early period of soaking, the C2H4-sensitive phase for seed germination precedes the CO2-sensitive phase in which CO2 potentiated axial growth. The restoration of CO2 responsiveness in axial growth occurred not only after C2H4 treatment but also after exposure to 8 or 33°C or after KCN treatment. Thus, secondarily dormant Xanthium seeds could germinate in response to CO2 alone, when they were previously exposed for shortterms not only to C2H4 but also 8°C, 33°C, or KCN.  相似文献   

18.
Ethylene Production in Pea and Cocklebur Seeds of Differing Vigour   总被引:1,自引:0,他引:1  
Relationships between seed vigour and ethylene (C2H4) productionwere studied using C2H4-responsive fatty cocklebur seeds (Xanthiumpennsyhanicum Wallr.) and C2H4-insensitive starchy pea seeds(Pisum sativum L. cv. Alaska), which had been harvested in differentyears and subjected to different storage conditions. In bothspecies, the seeds with the highest vigour evolved the largestamounts of C2H4 during a period of water imbibition. The reductionof C2H4 production in cocklebur seeds occurred concomitantlywith the reduction in the growth potentials of both axial andcotyledonary tissues. Similarly, the activity of ACC-C2H4 conversionincreased with soaking, and was greater in seeds of high vigourcompared with those of low vigour. However, the change in ACCcontent in pea seeds differed from that in cocklebur seeds.That is, pea seeds with high vigour accumulated less ACC duringan imbibition period than those with low vigour. From theseresults it was suggested that the inferior C2H4 production bylow vigour pea seeds is mainly attributable to low ACC-C2H4conversion, whereas that by low vigour cocklebur seeds is dueto the shortage of ACC supply in addition to the reduced ACC-C2H4conversion. However, germination of deteriorated cocklebur seedswas not restored by exposure to ACC or C2H4, suggesting thatthe loss of seed vigour reduces the responsiveness of seedsto C2H4 as well as C2H4 production. Key words: Pea, cocklebur, seed vigour, ethylene production, 1-aminocyclopropane-1-carboxylic acid  相似文献   

19.
Allium stracheyi Baker (Alliaceae, 2600–3000 m asl), an endangered species of Central Himalaya, India, has low seed germination in its natural habitat. This study is an attempt to improve seed germination by determining the seed viability with a low mean germination time (MGT) and germination index (GI) under optimum temperature, light, and pre-soaking treatments. The seeds were pre-soaked in hot water (80°C), cold water (10°C), and gibberellic acid (GA3 at 50 and 100 mg/l) for 24 h and subjected to light (12 h light and 12 h dark) and continuous dark (24 h) conditions with different temperature regimes (10, 15, 20, 25, and 30°C). The viability varied between 66.0% and 69.67% and declined rapidly after 12 months of storage. Our studies suggest that the 100 mg/l GA3 treatment was beneficial for seed germination and seedling growth. Pre-soaking in a 100 mg/l GA3 solution and incubation at 20°C under light conditions enhanced the germination significantly (p < 0.05) and resulted in the highest (97.3%) germination with the lowest MGT = 5.7 days, with GI = 8.11. The recommendations of this study support the conservation of alpine A. stracheyi via simple and cost-effective techniques for optimal seed germination.  相似文献   

20.
Negm FB  Smith OE 《Plant physiology》1978,62(4):473-476
Lettuce seeds (Lactuca sativa L.) used in this study germinated 98% at 25 C in light or dark. Their germination was completely inhibited by 0.20 m NaCl, 0.35 m mannitol, or polyethylene glycol 6000 (−7 bars) under continuous light when germination tests were made in Petri dishes. Approximately 50% germination occurred in sealed flasks due to endogenously produced C2H4 and CO2. Removal of either or both gases prevented germination. In the presence of endogenous CO2, addition of C2H4 (0.5 to 16 microliters/liter) stimulated 95 to 100% germination (after 5 days) only in the light, but the rate of germination was dependent on C2H4 concentration. At 16 microliters/liter C2H4, full germination occurred within 72 hours. Addition of up to 3.2% CO2 had no adverse effect on the C2H4 action. Higher concentrations or the complete absence of CO2 reduced both rate and total germination. CO2 alone was ineffective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号