首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Cyclic dynamics of bird and mammal populations are commonly reported in northern latitudes throughout the world, and recent European observations on rodents and grouse suggest that cycle periods decline towards southern latitudes. To investigate latitudinal patterns of cyclic dynamics in North America, we assembled 27 long‐term data sets collected between 1939 and 2001 for three grouse species. By fitting the data with autoregressive models to measure direct and delayed density dependence, we show that, in contrast to European studies, North American grouse exhibit period increases from north to south, with cycles collapsing via period lengthening. This occurs because delayed density dependence decreases in southern latitudes, whereas direct density dependence increases. These results show that cyclic dynamics can dissipate by period lengthening as well as the period shortening postulated for European grouse and rodents.  相似文献   

2.
Fox  & Hudson 《Ecology letters》2001,4(2):139-143
Hypotheses for the cause of population cycles have focused on the role of intrinsic mechanisms such as spacing behaviour and extrinsic mechanisms such as parasitism and predation. This paper examines the interaction between the two dominant hypotheses in the cycles of red grouse, parasitism and spacing behaviour. The influence of the caecal nematode, Trichostrongylus tenuis, on male aggressiveness was investigated using two approaches. First, the territorial behaviour of a group of male grouse experimentally treated with an anthelmintic to reduce parasite intensities was compared with a control group with natural intensities of infection. Second, the response of treated and control males to a novel conspecific territorial intruder were recorded using playback tests. Treated males, with reduced levels of parasitism, won significantly more territorial contests than control males and produced more aggressive behaviour in response to the playback recordings. These results show that parasite removal enhanced aggressive behaviour. Implications of these results on red grouse population dynamics are discussed.  相似文献   

3.
Red grouse Lagopus lagopus scoticus populations exhibit unstable dynamics that are often characterised by regular periodic fluctuations in abundance. Time-series' of grouse harvesting records collected from 287 management units (moors) across Scotland, England and Wales were analysed to investigate the broad scale patterns of synchrony in these fluctuations. Estimation of the spatial autocorrelation of grouse population dynamics across moors indicates relatively high levels of synchrony between populations on adjacent moors, but that this synchrony declines sharply with increasing inter-moor distance. At distances of greater than 100  km, grouse population time-series exhibit only weakly positive cross-correlation coefficients. Twenty-eight geographical, environmental and other candidate variables were examined to construct a general linear model to explain variation in local synchrony. Grouse moor productivity (average size of shooting bag), distance from the Atlantic coast moving in a north-easterly direction, April and June temperatures, and June rainfall significantly increased the explanatory power of this model. An understanding of the processes underlying synchrony in red grouse population dynamics is a prerequisite to anticipating the effects of large-scale environmental change on regional patterns of grouse distribution and abundance.  相似文献   

4.
We study the dynamics of the capercaillie, black grouse, hazel grouse and willow grouse in Kainuu game management district in northeastern Finland in the years 1989–2004. It appears that the 6–7 year periodicity that prevailed in this region from 1960s up to 1980s has now vanished in all species. The grouse data are modelled using a linear autoregressive model with lag terms for population dynamics including grouse harvest as annual bag and an index of winter severity (winter‐time area of Baltic Sea ice cover). We use the Akaike information criterion for selecting the best model for each species; first order lag is forced to the models. It turns out that a term is needed for harvesting (with a negative coefficient) in models for all species. For the capercaillie and the hazel grouse second order lag was included, for the black grouse and the willow grouse first order lag suffices. The willow grouse is the only species where the index of winter strength (with a negative coefficient) is needed in the model.  相似文献   

5.
Studies of grouse conducted at northern latitudes have shown that tetraonids frequently exhibit cyclic fluctuations in abundance but little is known about the dynamics of grouse species at the southerly edge of their range. Hunting statistics from four species of grouse based on 30 yr of data collected from 210 hunting areas were examined from the Dolomitic Alps in the province of Trentino. These data were summed to represent 18 time series from discrete mountain groups. Analyses identified cycles of ca 5 yr in the minority of rock ptarmigan Lagopus mutus and hazel grouse Bonasa bonasia populations. These cycles only showed significant negative autocorrelation at half the cycle period and were classified as phase-forgetting quasi-cycles. Cycles were not found in time series of black grouse Tetrao terix or capereaillie Tetrao urogallus. Correcting time series for hunting effort or hunting restrictions tended to increase the proportion of populations that exhibited cycles but no difference in the strength of second order density dependence, A linear first order density-dependent autoregressive model described the dynamics of most of the populations with the exception of a proportion of rock ptarmigan and black grouse populations where a non linear first order model provided the best tit. We compare the findings with studies conducted in Finland and suggest possible reasons for the reduced tendency to cycle in the populations of southern Europe.  相似文献   

6.
The role of parasites in regulating populations has been the subject of debate. We tested whether parasites caused population cycles in red grouse by manipulating parasite intensities in four, paired 1 km2 study areas during cyclic population declines over 4 years. Parasite reductions led to (1) larger grouse broods, (2) higher population densities in both autumn and spring, (3) reduced autumn population declines in one of two regions, and (4) reduced spring declines, but only in the first year. We infer that a single trophic interaction between a parasite and its host does not explain cyclic dynamics in spring breeding density in this species, although it contributed to the start of a cyclic decline. Another process was operating to drive the populations down. Together with our other results these findings emphasize that both trophic and intrinsic processes may act within populations to cause unstable dynamics.  相似文献   

7.
Collapsing population cycles   总被引:1,自引:0,他引:1  
During the past two decades population cycles in voles, grouse and insects have been fading out in Europe. Here, we discuss the cause and implication of these changes. Several lines of evidence now point to climate forcing as the general underlying cause. However, how climate interacts with demography to induce regime shifts in population dynamics is likely to differ among species and ecosystems. Herbivores with high-amplitude population cycles, such as voles, lemmings, snowshoe hares and forest Lepidoptera, form the heart of terrestrial food web dynamics. Thus, collapses of these cycles are also expected to imply collapses of important ecosystem functions, such as the pulsed flows of resources and disturbances.  相似文献   

8.
Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large‐scale, population count data. These data are commonly based on sampling methods that lack consistent sampling effort, do not account for detectability, and are complicated by observer bias. For some species, short‐term studies of demographic rates have been conducted as well, but the data from such studies are typically analyzed separately. To utilize the strengths and minimize the weaknesses of these two data types, we developed a novel Bayesian integrated model that links population count data and population demographic data through population growth rate (λ) for Gunnison sage‐grouse (Centrocercus minimus). The long‐term population index data available for Gunnison sage‐grouse are annual (years 1953–2012) male lek counts. An intensive demographic study was also conducted from years 2005 to 2010. We were able to reduce the variability in expected population growth rates across time, while correcting for potential small sample size bias in the demographic data. We found the population of Gunnison sage‐grouse to be variable and slightly declining over the past 16 years.  相似文献   

9.
Mougeot F  Evans SA  Redpath SM 《Oecologia》2005,144(2):289-298
The causes of population cycles fascinate and perplex ecologist. Most work have focused on single processes, whether extrinsic or intrinsic, more rarely on how different processes might interact to cause or mould the unstable population dynamics. In red grouse (Lagopus lagopus scoticus), two causal mechanisms have been supported: territorial behaviour (changes in autumn aggressiveness) and parasites (parasite induced reduction in fecundity). Here, we report on how these two regulatory processes might interact, by testing whether the parasite suspected to cause the grouse cycles, the nematode Trichostrongylus tenuis, reduces male autumn territorial behaviour. We either treated males with an anthelmintic, to remove parasites (dosed or D-males), or challenged them with infective T. tenuis larvae, to increase parasite intensity (challenged or C-males). We first show that dosing was effective in removing T. tenuis parasites, while parasite intensities increased in challenged birds during the autumn. Because old males initially had more parasites than young males, the treatments generated greater differences in parasite intensity in old than in young males. We also show that various aspects of territorial behaviour (increase in testosterone-dependent comb size in autumn, territorial call rate, likelihood of winning territorial interactions and over-winter survival) were significantly higher in dosed than in challenged males, but in old birds only. Our data thus supported the hypothesis that parasites reduce male aggressiveness during the autumn territorial contests, and could thereby influence recruitment. Our results also highlight that the territorial behaviour of young males, which have fewer parasites, is not as limited by parasites as that of old, previously territorial males. We discuss the implications of these findings for our understanding of the processes regulating red grouse populations and causing their complex, unstable population dynamics.  相似文献   

10.
Species associated with early successional habitats have experienced dramatic declines in the eastern United States as a result of land use changes and human disruption of natural disturbance regimes. Consequently, active management is required to create early successional habitat and promote plant and animal communities that depend on periodic forest disturbance. Ruffed grouse (Bonasa umbellus) depend on recently disturbed forest habitat, and have experienced dramatic declines over the last half-century. Although ruffed grouse are extensively studied, little effort has been made to link population dynamics with habitat management at landscape scales. We used stochastic, spatially explicit population models that combined landscape conditions derived from a Geographic Information System with demographic data, and applied the model to a declining ruffed grouse population in Rhode Island, USA. We identified vital rates that influence ruffed grouse population dynamics using baseline models constructed with current demographic rates and landscape conditions, and assessed the effect of landscape-scale forest management alternatives on population persistence by running multiple management simulations. Baseline models typically predicted population decline, and we concluded that vital rates (survival and recruitment) had a greater influence on population persistence than did dispersal capability, carrying capacity, or initial population size. Management simulations predicted greater population persistence under a scenario where high-quality habitat was provided in fewer large blocks as opposed to many small blocks, and the rate at which we allowed ruffed grouse to colonize newly created habitat had a substantial impact on management success. Populations of ruffed grouse in the eastern United States are likely to continue to decline given current disturbance regimes, and our work provides a link between ruffed grouse demography and landscape-scale habitat conditions to support management decisions. © 2011 The Wildlife Society.  相似文献   

11.
We interrogate an 18-year-long dataset containing counts of displaying male black grouse Tetrao tetrix and incidental counts of females within an 800-km2 region of Perthshire, Scotland. We examine the trends in the population and investigate how different components of the population might act as signposts of different stages of overall population change. We found statistical evidence for a decline in black grouse numbers between 1992 and 2000, and then a recovery from 2002 to 2008, but little evidence for a link between population change and weather during the decline phase. There was some evidence for a positive relationship between male and female counts. The two main components of male population size, lek size and lek frequency followed the overall population trend while it was increasing, but during the earlier decline, the two became uncoupled, to expose a complex structure within the data. During the decline, when black grouse numbers were approaching their minimum, mean lek size was actually increasing. Small leks lost proportionally more birds than did large leks, and lek longevity was positively correlated with lek size, indicating that maintenance of large leks is crucial in buffering the population against serious declines. During the decline, the spatial arrangement of leks changed, with remnant leks showing tight clustering at larger spatial scales, before expanding out to fill the large areas of unoccupied landscape during the population increase. We discuss these findings in terms of species monitoring and suggest that counts of young males may add much useful demographic information with little extra effort.  相似文献   

12.
1.?The effect of selective exploitation of certain age, stage or sex classes (e.g., trophy hunting) on population dynamics is relatively well studied in fisheries and sexually dimorphic mammals. 2.?Harvesting of terrestrial species with no morphological differences visible between the different age and sex classes (monomorphic species) is usually assumed to be nonselective because monomorphicity makes intentionally selective harvesting pointless and impractical. But harvesting of the red grouse (Lagopus lagopus scoticus), a monomorphic species, was recently shown to be unintentionally selective. This study uses a sex- and age-specific model to explore the previously unresearched effects of unintentional harvesting selectivity. 3.?We examine the effects of selectivity on red grouse dynamics by considering models with and without selectivity. Our models include territoriality and parasitism, two mechanisms known to be important for grouse dynamics. 4.?We show that the unintentional selectivity of harvesting that occurs in red grouse decreases population yield compared with unselective harvesting at high harvest rates. Selectivity also dramatically increases extinction risk at high harvest rates. 5.?Selective harvesting strengthens the 3- to 13-year red grouse population cycle, suggesting that the selectivity of harvesting is a previously unappreciated factor contributing to the cycle. 6.?The additional extinction risk introduced by harvesting selectivity provides a quantitative justification for typically implemented 20-40% harvest rates, which are below the maximum sustainable yield that could be taken, given the observed population growth rates of red grouse. 7.?This study shows the possible broad importance of investigating in future research whether unintentionally selective harvesting occurs on other species.  相似文献   

13.
Fluctuating populations are frequently demonstrated to co‐vary in abundance over space, but the dynamics of coupling between populations that gives rise to this synchrony are poorly understood. Synchrony may arise through coupling that is weak and continuous, but in populations that cycle with a characteristic period, synchrony can be maintained through stronger coupling that acts only intermittently. Here, we apply a discrete Markov model that describes the state of a population trajectory to be in one of four possible states. The Markov model reveals the nature of the coupling that gives rise to the weakly synchronous cycles of red grouse abundance. Using time‐series data from 287 populations across the species range in the UK, we show that grouse populations appear mostly uncoupled through time, but that approximately one year in six, “collective forcing events” occur, where populations in a region are forced into synchrony to a significantly greater degree than would be expected if their dynamics proceeded independently. In the absence of these events, synchrony between populations dissipates within ~3 yr. Smaller, low abundance populations tend to make the less probable phase shifts required to synchronize with nearby high abundance populations, suggesting that these low abundance populations are more susceptible to the perturbations responsible for phase shifts than larger populations.  相似文献   

14.
Vegetation management practices have been applied worldwide to enhance habitats for a variety of wildlife species. Big sagebrush (Artemisia tridentata spp.) communities, iconic to western North America, have been treated to restore herbaceous understories through chemical, mechanical, and prescribed burning practices thought to improve habitat conditions for greater sage‐grouse (Centrocercus urophasianus) and other species. Although the response of structural attributes of sagebrush communities to treatments is well understood, there is a need to identify how treatments influence wildlife population dynamics. We investigated the influence of vegetation treatments occurring in Wyoming, United States, from 1994 to 2012 on annual sage‐grouse population change using yearly male sage‐grouse lek counts. We investigated this response across 1, 3, 5, and 10‐year post‐treatment lags to evaluate how the amount of treated sagebrush communities and time since treatment influenced population change, while accounting for climate, wildfire, and anthropogenic factors. With the exception of chemical treatments exhibiting a positive association with sage‐grouse population change 11 years after implementation, population response to treatments was either neutral or negative for at least 11 years following treatments. Our work supports a growing body of research advocating against treating big sagebrush habitats for sage‐grouse, particularly in Wyoming big sagebrush (A. t. wyomingensis). Loss and fragmentation of sagebrush habitats has been identified as a significant threat for remaining sage‐grouse populations. Because sagebrush may take decades to recover following treatments, we recommend practitioners use caution when designing projects to alter remaining habitats, especially when focused on habitat requirements for one life stage and a single species.  相似文献   

15.
Different prey species can vary in their significance to a particular predator. In the simplest case, the total available density or biomass of a guild of several prey species might be most relevant to the predator, but behavioural and ecological traits of different prey species can alter the picture. We studied the population dynamics of a predator–prey setting in Finland by fitting first-order log-linear vector autoregressive models to long-term count data from active breeding sites of the northern goshawk (Accipiter gentilis; 1986–2009), and to three of its main prey species (1983–2010): hazel grouse (Bonasa bonasia), black grouse (Tetrao tetrix) and capercaillie (T. urogallus), which belong to the same forest grouse guild and show synchronous fluctuations. Our focus was on modelling the relative significance of prey species and estimating the tightness of predator–prey coupling in order to explain the observed population dynamics, simultaneously accounting for effects of density dependence, winter severity and spatial correlation. We established nine competing candidate models, where different combinations of grouse species affect goshawk dynamics with lags of 1–3 years. Effects of goshawk on grouse were investigated using one model for each grouse species. The most parsimonious model for goshawk indicated separate density effects of hazel grouse and black grouse, and different effects with lags of 1 and 3 years. Capercaillie showed no effects on goshawk populations, while the effect of goshawk on grouse was clearly negative only in capercaillie. Winter severity had significant adverse effects on goshawk and hazel grouse populations. In combination, large-scale goshawk–grouse population dynamics are coupled, but there are no clear mutual effects for any of the individual guild members. In a broader context, our study suggests that pooling data on closely related, synchronously fluctuating prey species can result in the loss of relevant information, rather than increased model parsimony.  相似文献   

16.
Selås V  Kålås JA 《Oecologia》2007,153(3):555-561
Two recent studies on territory occupancy rates of goshawk Accipiter gentilis and gyrfalcon Falco rusticolus report a 2–3-year-delayed numerical response to grouse numbers, which is a requirement for a hypothesis of predator-generated grouse cycles. The time lags were assumed to reflect the average age of sexual maturity in the raptor species. In southern Norway, however, subadult (two-year-old) goshawk hens occupied only 18–25% of territories where occupancy was not recorded in the preceding year, and there was no significant relationship between the proportion of subadults among recruits and grouse indices two years earlier. We argue that territory occupancy rates are not appropriate indices of total raptor population levels, but rather reflect the proportion of territorial pairs that attempt to nest. Because this depends on the body condition of the hens, fluctuations in other important winter resident prey species (most important for the goshawk) and winter weather (most important for the gyrfalcon) should also be addressed. During 1988–2006, the annual proportion of goshawk territories with recorded nesting attempts in southern Norway was most closely related to the preceding autumn’s population indices of black grouse Tetrao tetrix and mountain hare Lepus timidus, whereas the annual proportion of gyrfalcon territories with observations of falcons or with confirmed breeding attempts in central Norway were best explained by population indices of willow grouse Lagopus lagopus and ptarmigan L. mutus from the previous autumn, and by December temperatures. Hence, our studies do not support the predation hypothesis for grouse cycles.  相似文献   

17.
Harvest data are commonly used as proxy for count data, especially in studies of long‐term temporal and spatial patterns of population fluctuations. However, usually the concurrence of the conclusions based on different types of data is impossible to verify due to the lack of count data. Here, we use annual (1964–2004) harvest and population census data for capercaillie, black grouse and hazel grouse from 14 game management districts covering Finland, and demonstrate some mismatch in the information that these data sets provide. Overall, linear regressions of annual harvest against population count give a reasonable fit, but the slopes are less than 1 in every species. Harvest bags have been proportionally larger in north and eastern Finland than in southwestern Finland, with marked species‐specific differences. Considering population variation, the CV% in the census data (30–50%) is consistently smaller than it is in the harvest data (60–70%). Most importantly, conclusions on the spatio‐temporal patterns of the population dynamics are different if based on harvest rather than count data. In capercaillie, synchrony decreases faster with distance according to the harvest data, while in black grouse and hazel grouse the census data show the steeper decline. In addition, the autocorrelation coefficients in the census time series are higher in capercaillie and black grouse than in harvest data, but in hazel grouse the opposite is true. Finally, the parameter estimates for a second order autoregressive model using different data sets differ, and these differences are species‐specific. Despite the fact that annual harvest is a positive and linear function of annual grouse population density, the pattern of population dynamics derived from the bag data is different from that shown by the census data. This result urges caution in using wildlife bag data as reliable indices of population dynamics. deceased August 2008.  相似文献   

18.
Temporal asymmetry in patterns of regional climate change may jeopardize the match between the proximate and ultimate cues of the timing of breeding. The consequences on short- and long-term population dynamics and trends as well as the underlying mechanisms are, however, often unknown. Using long-term data from Finland, we demonstrate that black grouse (Tetrao tetrix) have responded to spring warming by advancing both egg-laying and hatching. However, early summer (the time of hatching) has not advanced, and chicks have to face colder post-hatching conditions. Demonstrating that these conditions are critical to post-hatching survival, we show that chicks are increasingly suffering higher mortality because they hatch too early. Consequently, breeding success and population size has severely declined over the past four decades. Finally, we modelled the impact of this particular climate change scenario on population dynamics and show that the mismatch can further explain the observed collapse of cyclic fluctuations. Because the evolutionary response of grouse is lagging behind the novel selective pressures, seasonally asymmetric climate change is likely to constitute an important determinant of future short- and long-term changes in the dynamics of black grouse populations.  相似文献   

19.
Several animal species have cyclic population dynamics with phase-related cycles in life history traits such as body mass, reproductive rate, and pre-reproductive period. Although many mechanisms have been proposed there is no agreement on the cause of these cycles, and no population equation that deduces both the abundance and the life history cycles from basic ecological constraints has been formulated. Here I deduce a population dynamic equation from the selection pressure of density dependent competitive interactions in order to explain the cyclic dynamics in abundance and life history traits. The model can explain cycles by evolutionary changes in the genotype or by plastic responses in the phenotype. It treats the population dynamic growth rate as an initial condition, and its density independent fundament is Fisher’s (1930, The Genetical Theory of Natural Selection, Oxford: Clarendon) fundamental theorem of natural selection that predicts a hyper-geometrical increase in abundance. The predicted periods coincide with the cyclic dynamics of Lepidoptera, and the Calder hypothesis, which suggests that the period of population cycles is proportional to the 1/4 power of body mass, follows from first principles of the proposed density dependent ecology.  相似文献   

20.
Field studies of mechanisms involved in population regulation have tended to focus on the roles of either intrinsic or extrinsic factors, but these are rarely mutually exclusive and their interactions can be crucial in determining dynamics. Experiments on red grouse Lagopus lagopus scoticus have shown that population instability can be caused both by the effects of a parasitic nematode, Trichostrongylus tenuis, on host production or by changes in testosterone influencing aggressive behaviour and recruitment. We experimentally tested for an interaction between testosterone and T. tenuis in free-living male grouse. A total of 123 grouse were caught in autumn, treated with an anthelmintic to remove parasites, and then given either testosterone or empty, control, implants. After one month grouse were re-infected with a standard dose of parasites. We show that males with increased testosterone levels had greater parasite intensities than controls after one year. We discuss possible physiological and behavioural mechanisms linking testosterone and increased parasite intensity, and the implications for our understanding of complex, unstable population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号