首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sclerosis is an inflammatory disease believed to be triggered by erroneous activation of self-reactive T cells specific for myelin proteins such as myelin basic protein (MBP). Inflammation is limited to the CNS, suggesting that the myelin-specific T cells encounter their Ags only after they cross the blood-brain barrier. However, our previous studies in mice showed that MBP epitopes are constitutively presented in lymphoid tissues. Here we identified which APCs in lymph nodes present endogenous MBP epitopes and determined the functional consequences of this presentation for both naive and activated MBP-specific T cells. Both CD8alpha+ and CD8alpha- dendritic cells were potent stimulators of proliferation for both naive and previously activated/memory MBP-specific T cells. Surprisingly, resting B cells also presented endogenous MBP that was acquired using a BCR-independent mechanism. Interaction with resting B cells triggered proliferation of both naive and activated MBP-specific T cells. Activated/memory MBP-specific T cells proliferating in response to resting B cells presenting endogenous MBP did not produce cytokines and became more refractory to subsequent stimulation. Interestingly, cytokine production by activated/memory T cells was triggered by resting B cells if the number of MBP epitopes presented was increased by adding exogenous MBP peptide. These results suggest that activated MBP-specific T cells may become less pathogenic in vivo following encounter with resting B cells presenting steady-state levels of endogenous MBP but can expand and remain pathogenic if the amount of MBP presented by B cells is increased, which could occur during chronic demyelinating disease.  相似文献   

2.
APC exposed to TGFbeta2 and Ag (tolerogenic APC) promote peripheral Ag-specific tolerance via the induction of CD8(+) T regulatory cells capable of suppressing Th1 and Th2 immunity. We postulated that tolerogenic APC might reinstate tolerance toward self-neuronal Ags and ameliorate ongoing experimental autoimmune encephalomyelitis (EAE). Seven days after immunization with myelin basic protein (MBP), mice received MBP-specific tolerogenic APC, and EAE was evaluated clinically. To test for the presence and the phenotype of T regulatory cells, CD4 and/or CD8 T cells from tolerogenic APC-treated mice were transferred to naive mice before their immunization with MBP. The MBP-specific tolerogenic APC decreased both the severity and incidence of ongoing EAE. Tolerance to self-neuronal Ags was induced in naive recipient mice via adoptive transfer of CD8(+), but not CD4(+) T cells. Rational use of in vitro-generated tolerogenic APC may lead to novel therapy for autoimmune disease.  相似文献   

3.
Previously, we reported that tolerance to nickel, induced by oral administration of Ni(2+) ions, can be adoptively transferred to naive mice with only 10(2) splenic T cells. Here we show that 10(2) T cell-depleted spleen cells (i.e., APCs) from orally tolerized donors can also transfer nickel tolerance. This cannot be explained by simple passive transfer of the tolerogen. The APCs from orally tolerized donors displayed a reduced allostimulatory capacity, a tolerogenic phenotype, and an increased expression of CD38 on B cells. In fact, it was B cells among the APCs that carried the thrust of tolerogenicity. Through serial adoptive transfers with Ly5.1(+) donors and two successive sets of Ly5.2(+) recipients, we demonstrated that nickel tolerance was infectiously spread from donor to host cells. After the transfer of either T cells or APCs from orally tolerized donors, the spread of tolerance to the opposite cell type of the recipients (i.e., APCs and T cells, respectively) required recipient immunization with NiCl(2)/H(2)O(2). For the spread of tolerance from a given donor cell type, T cell or APC, to the homologous host cell type, the respective opposite cell type in the host was required as intermediate. We conclude that T suppressor cells and tolerogenic APCs induced by oral administration of nickel are part of a positive feedback loop that can enhance and maintain tolerance when activated by Ag associated with a danger signal. Under these conditions, APCs and T suppressor effector cells infectiously spread the tolerance to naive T cells and APCs, respectively.  相似文献   

4.
Previously, oral administration of nickel to C57BL/6 wild-type (WT) mice was shown to render both their splenic T cells and APCs (i.e., T cell-depleted spleen cells) capable of transferring nickel tolerance to naive syngeneic recipients. Moreover, sequential adoptive transfer experiments revealed that on transfer of tolerogenic APCs and immunization, the naive T cells of the recipients differentiated into regulatory T (Treg) cells. Here, we demonstrate that after oral nickel treatment Jalpha18(-/-) mice, which lack invariant NKT (iNKT) cells, were not tolerized and failed to generate Treg cells. However, transfer of APCs from those Jalpha18(-/-) mice did tolerize WT recipients. Hence, during oral nickel administration, tolerogenic APCs are generated that require iNKT cell help for the induction of Treg cells. To obtain this help, the tolerogenic APCs must address the iNKT cells in a CD1-restricted manner. When Jalpha18(-/-) mice were used as recipients of cells from orally tolerized WT donors, the WT Treg cells transferred the tolerance, whereas WT APCs failed to do so, although they proved tolerogenic on transfer to WT recipients. However, Jalpha18(-/-) recipients did become susceptible to the tolerogenicity of transferred WT APCs when they were reconstituted with IL-4- and IL-10-producing CD4(+) iNKT cells. We conclude that CD4(+) iNKT cells are required for the induction of oral nickel tolerance and, in particular, for the infectious spread of tolerance from APCs to T cells. Once induced, these Treg cells, however, can act independently of iNKT cells.  相似文献   

5.
Self-reactive T cells are known to be eliminated by negative selection in the thymus or by the induction of tolerance in the periphery. However, developmental pathways that allow self-reactive T cells to inhabit the normal repertoire are not well-characterized. In this investigation, we made use of anti-small nuclear ribonucleoprotein particle (snRNP) Ig transgenic (Tg) mice (2-12 Tg) to demonstrate that autoreactive T cells can be detected and activated in both normal naive mice and autoimmune-prone MRL lpr/lpr mice. In contrast, autoreactive T cells of nonautoimmune Tg mice are tolerized by Tg B cells in the periphery. In adoptive transfer studies, autoreactive T cells from MRL lpr/lpr mice can stimulate autoantibody synthesis in nonautoimmune anti-snRNP Tg mice. Transferred CD4 T cells migrate to regions of the spleen proximal to the B cell follicles, suggesting that cognate B cell-T cell interactions are critical to the autoimmune response. Taken together, our studies suggest that anti-snRNP B cells are important APCs for T cell activation in autoimmune-prone mice. Additionally, we have demonstrated that anti-snRNP B cell anergy in nonautoimmune mice may be reversed by appropriate T cell help.  相似文献   

6.
The oral administration of myelin proteins has been used for the successful prevention and treatment of experimental autoimmune encephalomyelitis (EAE). We questioned whether the thymus was involved in oral tolerance. In this study, euthymic myelin basic protein (MBP) TCR transgenic mice are protected from EAE when fed MBP but are not protected when thymectomized. Similarly, in a cell transfer system, T cell responses to OVA measured in vivo were suppressed significantly only in the OVA-fed euthymic mice but not in the thymectomized mice. We observed that the absence of the thymus dramatically enhanced the Th1 response. We explored three alternatives to determine the role of the thymus in oral tolerance: 1) as a site for the induction of regulatory T cells; 2) a site for deletion of autoreactive T cells; or 3) a site for the dissemination of naive T cells. We found that Foxp3(+)CD4(+)CD25(+) T cells are increased in the periphery but not in the thymus after Ag feeding. These CD4(+)CD25(+) T cells also express glucocorticoid-induced TNFR and intracellular CTLA4 and suppress Ag-specific proliferation of CD4(+)CD25(-) cells in vitro. The thymus also plays a role in deletion of autoreactive T cells in the periphery following orally administered MBP. However, thymectomy does not result in homeostatic proliferation and the generation of memory cells in this system. Overall, the oral administration of MBP has a profound effect on systemic immune responses, mediated largely by the generation of regulatory T cells that act to prevent or suppress EAE.  相似文献   

7.
Involvement of dectin-2 in ultraviolet radiation-induced tolerance   总被引:5,自引:0,他引:5  
Hapten sensitization through UV-exposed skin induces hapten-specific tolerance which can be adoptively transferred by injecting T cells into naive recipients. The exact phenotype of the regulatory T cells responsible for inhibiting the immune response and their mode of action remain largely unclear. Dectin-2 is a C-type lectin receptor expressed on APCs. It was postulated that dectin-2 interacts with its putative ligands on T cells and that the interaction may deliver costimulatory signals in naive T cells. Using a soluble fusion protein of dectin-2 (sDec2) which should inhibit this interaction, we studied the effect on contact hypersensitivity (CHS) and its modulation by UV radiation. Injection of sDec2 affected neither the induction nor the elicitation phase of CHS. In contrast, UV-induced inhibition of the CHS induction was prevented upon injection of sDec2. In addition, hapten-specific tolerance did not develop. Even more importantly, injection of sDec2 into tolerized mice rendered the recipients susceptible to the specific hapten, indicating that sDec2 can break established tolerance. FACS analysis of spleen and lymph node cells revealed a significantly increased portion of sDec2-binding T cells in UV-tolerized mice. Furthermore, transfer of UV-mediated suppression was lost upon depletion of the sDec2-positive T cells. Taken together, these data indicate that dectin-2 and its yet unidentified ligand may play a crucial role in the mediation of UV-induced immunosuppression. Moreover, sDec2-reactive T cells appear to represent the regulatory T cells responsible for mediating UV-induced tolerance.  相似文献   

8.
Oral tolerance induction is thought to depend on special antigen presenting cells in the gut. A new report in the previous issue of Arthritis Research & Therapy supports this idea by demonstrating that indoleamine 2,3-dioxygenase-expressing dendritic cells in Peyer's patches from orally tolerized mice suppress T-cell responses via the generation of CD4+CD25+ regulatory T cells. This finding provides novel input into the mechanisms of oral tolerance that could further facilitate its use for the treatment of autoimmunity and chronic inflammatory reactions.  相似文献   

9.
Multiple sclerosis (MS) is believed to be an autoimmune disease mediated by T cells specific for CNS Ags. MS lesions contain both CD4+ and CD8+ T lymphocytes. The contribution of CD4+ T cells to CNS autoimmune disease has been extensively studied in an animal model of MS, experimental autoimmune encephalomyelitis. However, little is known about the role of autoreactive CD8+ cytotoxic T cells in MS or experimental autoimmune encephalomyelitis. We demonstrate here that myelin basic protein (MBP) is processed in vivo by the MHC class I pathway leading to a MBP79-87/Kk complex. The recognition of this complex by MBP-specific cytotoxic T cells leads to a high degree of tolerance in vivo. This study is the first to show that the pool of self-reactive lymphocytes specific for MBP contain MHC class I-restricted T cells whose response is regulated in vivo by the induction of tolerance.  相似文献   

10.
We have recently reported that experimental autoimmune encephalomyelitis (EAE) can be suppressed by the oral administration of myelin basic protein (MBP). The oral introduction of 20 mg MBP together with a trypsin inhibitor results in inhibition of EAE clinical signs, decreased CNS histopathologic changes and dramatically reduced MBP-specific proliferative responses in fed and challenged Lewis rats. In the present study, we have investigated the mechanism underlying MBP-induced oral tolerance in EAE. Neither lymphoid cells (lymph node cells, spleen cells, Peyer's patch lymphocytes, thymocytes) nor humoral elements derived from tolerant donors were capable of transferring the tolerance to naive recipients. Moreover, lymphoid cells obtained from orally tolerant donors exhibited a marked decrease in their capacity to transfer EAE to naive recipient rats, even after in vitro activation with MBP or Con A. We observed that EAE could be readily transferred into orally tolerant rats using MBP-specific encephalitogenic T cell lines. In vitro cell mixing studies showed that the proliferation of lymphocytes from MBP-sensitized donors was not inhibited by the addition of lymphoid cells from tolerant donors, arguing against the role of a suppressor cell. Investigation of MBP-stimulated lymphokine production showed that both IL-2 and IFN-gamma levels were substantially decreased in spleen and lymph node cell cultures from MBP-fed rats compared to vehicle-fed control animals. Furthermore, limiting dilution analyses revealed that MBP-fed rats exhibited a profound decrease in MBP-reactive, IL-2-secreting lymphocytes relative to control animals. Thus, because lymphocytes from MBP-fed rats neither proliferate nor secrete IL-2 or IFN-gamma in response to MBP and we can find no compelling evidence for the role of suppressor cells, we propose that the oral administration of MBP results in a state of clonal anergy.  相似文献   

11.
Various mechanisms of peripheral T cell tolerization have evolved to avoid responses mediated by autoreactive T cells that have not been eliminated in the thymus. In this study, we investigated the peripheral conditions of Ag presentation required to induce T cell tolerance when the predominant APCs are B cells. We show that transient Ag presentation, in absence of inflammation and in a self-context, induces CD4(+) T cell activation and memory formation. In contrast, chronic Ag presentation leads to CD4(+) T cell tolerance. The importance of long-lasting Ag presentation in inducing tolerance was also confirmed in the herpes stromal keratitis autoimmune disease model. Keratogenic T cells could be activated or tolerized depending on the APC short or long persistence. Thus, when APCs are B cells, the persistence of the Ag presentation itself is one of the main conditions to have peripheral T cell tolerance.  相似文献   

12.
Naive T cells can be tolerized in the periphery by diverse mechanisms. However, the extent to which memory T cells are susceptible to tolerance induction is less well defined. Vaccination of mice with a minimal CTL epitope derived from human adenovirus type 5 E1A in IFA s.c. readily tolerizes naive as well as recently activated CD8(+) T cells due to the overwhelming systemic and persistent presence of the peptide. We have now studied the effect of this peptide on established memory cells, which were induced at least 50 days before by virus vaccination. Memory cells did not undergo peripheral deletion and kept their ability to produce IFN-gamma as well as their cytolytic activity in response to Ag directly ex vivo. However, memory CTL responses in virus vaccinated mice injected with peptide ceased to control tumor outgrowth. Interestingly, functional capacities were regained when T cells were transferred to an Ag-free environment in vivo as determined by their ability to reject an otherwise lethal tumor challenge. Together, these findings indicate that memory CTL responses can be functionally incapacitated, but are not, in contrast to naive or recently activated T cells, irreversibly tolerized by persistent systemic Ag, as memory T cells quickly regain effector function upon disappearance of the Ag.  相似文献   

13.
Multiple sclerosis (MS) is a T-cell mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing–remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain : calpastatin ratio, production of truncated Bid, and Bax : Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS.  相似文献   

14.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory neurological disease initiated by activated T cells specific for the autoantigen, myelin basic protein (MBP). The ability of Lewis rat splenic T cells to transfer EAE after in vitro incubation with MBP-pulsed dendritic cells (DC) was used as an index of MBP-specific T cell activation. OVA, previously processed by macrophages, was incubated with MBP and DC at the pulsing stage to determine whether it could inhibit presentation of the autoantigen. At molar equivalents of 2.5:1 and 20:1 relative to MBP, processed OVA increasingly inhibited the ability of DC to activate MBP-specific T cells for EAE transfer. Unprocessed OVA, which cannot be presented immunogenically by Lewis rat DC, was much less effective. However, processed OVA added to DC after they had been pulsed with MBP could not compete. OVA also blocked appearance of EAE when mixed with MBP/CFA in the inoculum used for active induction of the disease. Splenic T cells from MBP + OVA/CFA-immunized rats transferred EAE with a substantially delayed onset, suggesting that a reduced number of MBP-specific T cells was generated by immunizing with the OVA + MBP mixture compared with MBP alone. Overall, the data indicate that fragments of a foreign protein, OVA, which can be bound by APC, can also inhibit presentation of encephalitogenic determinants of MBP to T cells.  相似文献   

15.
Role of B7 in T cell tolerance   总被引:7,自引:0,他引:7  
The induction of effective immune responses requires costimulation by B7 molecules, and Ag recognition without B7 is thought to result in no response or tolerance. We compared T cell responses in vivo to the same Ag presented either by mature dendritic cells (DCs) or as self, in the presence or absence of B7. We show that Ag presentation by mature B7-1/2-deficient DCs fails to elicit an effector T cell response but does not induce tolerance. In contrast, using a newly developed adoptive transfer system, we show that naive OVA-specific DO11 CD4+ T cells become anergic upon encounter with a soluble form of OVA, in the presence or absence of B7. However, tolerance in DO11 cells transferred into soluble OVA transgenic recipients can be broken by immunization with Ag-pulsed DCs only in B7-deficient mice and not in wild-type mice, suggesting a role of B7 in maintaining tolerance in the presence of strong immunogenic signals. Comparing two double-transgenic models--expressing either a soluble or a tissue Ag--we further show that B7 is not only essential for the active induction of regulatory T cells in the thymus, but also for their maintenance in the periphery. Thus, the obligatory role of B7 molecules paradoxically is to promote effective T cell priming and contain effector responses when self-Ags are presented as foreign.  相似文献   

16.
Molecular mimicry is the process by which T cells activated in response to determinants on an infecting microorganism cross-react with self epitopes, leading to an autoimmune disease. Normally, infection of SJL/J mice with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) results in a persistent CNS infection, leading to a chronic progressive, CD4(+) T cell-mediated demyelinating disease. Myelin damage is initiated by T cell responses to virus persisting in CNS APCs, and progressive demyelinating disease (50 days postinfection) is perpetuated by myelin epitope-specific CD4(+) T cells activated by epitope spreading. We developed an infectious model of molecular mimicry by inserting a sequence encompassing the immunodominant myelin epitope, proteolipid protein (PLP) 139-151, into the coding region of a nonpathogenic TMEV variant. PLP139-TMEV-infected mice developed a rapid onset paralytic inflammatory, demyelinating disease paralleled by the activation of PLP139-151-specific CD4(+) Th1 responses within 10-14 days postinfection. The current studies demonstrate that the early onset demyelinating disease induced by PLP139-TMEV is the direct result of autoreactive PLP139-151-specific CD4(+) T cell responses. PLP139-151-specific CD4(+) T cells from PLP139-TMEV-infected mice transferred demyelinating disease to naive recipients and PLP139-151-specific tolerance before infection prevented clinical disease. Finally, infection with the mimic virus at sites peripheral to the CNS induced early demyelinating disease, suggesting that the PLP139-151-specific CD4(+) T cells could be activated in the periphery and traffic to the CNS. Collectively, infection with PLP139-151 mimic encoding TMEV serves as an excellent model for molecular mimicry by inducing pathologic myelin-specific CD4(+) T cells via a natural virus infection.  相似文献   

17.
Naive CD8(+) T cells are activated on encounter with Ag presented on dendritic cells and proliferate rapidly. To investigate the regulation of naive CD8(+) T cells proliferation, we adoptively transferred TCR-transgenic CD8(+) T cells into intact mice together with Ag-pulsed dendritic cells. Regardless of the number of cells initially transferred, the expansion of activated Ag-specific CD8(+) T cells was limited to a ceiling of effector cells. This limit was reached from a wide range of T cell doses, including a physiological number of precursor cells, and was not altered by changing the amount of Ag or APCs. The total Ag-specific response was composed of similar numbers of host and donor transgenic cells regardless of donor cell input, suggesting that these populations were independently regulated. Regulation of the transgenic donor cell population was TCR specific. We hypothesize that a clone-specific regulatory mechanism controls the extent of CD8(+) T cell responses to Ag.  相似文献   

18.
Inoculation of Lewis rats with live or attenuated (irradiated or paraformaldehyde-fixed) CD4+ encephalitogenic T cells (S1 line) protects the recipients from transferred experimental autoimmune encephalomyelitis (tEAE) induced by S1 cells. A CD8+ T lymphocyte population specifically activated against the EAE-inducing S1 cells can be readily isolated from the lymphoid organs of pretreated animals. We show, in the present study, that encephalitogenic T cell lines derived from Lewis rats differ in their ability to induce resistance against tEAE in vivo and to stimulate CD8+ cell proliferation in vitro. We also demonstrate that the S19 line of encephalitogenic T cells, in combination with myelin basic protein (MBP), can stimulate CD8+ cell proliferation in vitro. The CD8+ cells generated in this way strongly suppress MBP-specific T cell proliferation in vitro. This combined effect of T cells and MBP was also evident in vivo. Neither S19 cells nor MBP alone induced resistance against S19-mediated tEAE, rather coinjection of these cells and MBP was required. Our results suggest that resistance to EAE is mediated by distinct populations of encephalitogenic T cells that activate Ts cells through different mechanisms. In some instances, both autoreactive T cells and their relevant autoantigen(s) may be needed to activate Ts cells in vivo.  相似文献   

19.
In this study we compared myelin basic protein (MBP) and phytohemagglutinin (PHA) for their ability to induce proliferation and experimental autoimmune encephalomyelitis (EAE) transfer activity in mixed cell cultures obtained from spleen and lymph nodes versus highly selected MBP-specific T cell lines and clones. Established MBP-specific cells derived initially from immune lymph nodes attained both proliferative and EAE-transfer activities after in vitro activation with either MBP or PHA. In contrast, PHA was unable to induce immune spleen cells to transfer EAE, in spite of its potent mitogenic activity. On the basis of these results, we evaluated the in vitro proliferation and differentiation responses of MBP-specific T cells during the line selection process using cells derived from both immune lymph node and immune spleen. During the initial selection process with MBP, proliferation of MBP-specific T cell precursors from immunized spleen populations was reduced relative to lymph node cells. After antigen-dependent selection the encephalitogenic cells from either organ exhibited identical in vitro response characteristics. Freshly isolated immune spleen cells were potent suppressors of MBP-specific T cell proliferation suggesting that the in vitro differences between the two organs was due to splenic suppression of the encephalitogenic cells.  相似文献   

20.
Oral administration of a myelin component, myelin basic protein (MBP), induces immunological unresponsiveness to CNS Ags and ameliorates murine relapsing experimental autoimmune encephalomyelitis (REAE). However, a recent clinical trial in which multiple sclerosis patients were treated with repeated doses of oral myelin was unsuccessful in reducing disease exacerbations. Therefore, we directly compared the tolerizing capacity of myelin vs MBP during REAE in B10.PL mice. Oral administration of high doses of myelin, either before disease induction or during REAE, did not provide protection from disease or decrease in vitro T cell responses. In contrast, repeated oral administration of high doses of MBP suppressed established disease and MBP-specific T cell proliferation and cytokine responses. The frequency of IL-2-, IFN-gamma-, and IL-5-secreting MBP-specific T cells declined with MBP feeding, implicating anergy and/or deletion as the mechanism(s) of oral tolerance after high Ag doses. We have previously shown that the dosage and timing of Ag administration are critical parameters in oral tolerance induction. Studies presented here demonstrate that Ag homogeneity is also important, i.e., homogeneous Ag (MBP) is more effective at inducing oral tolerance than heterogeneous Ag (myelin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号