首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gibberellic and beta-indolylacetic acids at concentrations of 10(-7)-10(-5) M were shown to change the hormonal status and duration of dormancy in potato tubers. Gibberellic acid shortened the dormancy and decreased the contents of abscisic acid and ethylene in apical meristems. beta-Indolylacetic acid elongated the dormancy, decreased abscisic acid production, but caused a more than tenfold increase in the production of ethylene by apical tissues. The data suggest that beta-indolylacetic acid and ethylene, as well as gibberellic and abscisic acids, are involved in the regulation of dormancy in potato tubers.  相似文献   

2.
The possible roles of oxygen and carbon dioxide treatments inthe presence or absence of ethylene on tuber dormancy releasein potato (Solanum tuberosumL.) were examined. Using two gascompositions (I: 60% CO2–20% O2–20% N2and II: 20%CO2–40% O2–40% N2), the phase of tuber dormancyand previous storage temperature were demonstrated to be importantparameters for dormancy release by these gas mixtures. Gas Icaused decreased abscisic acid (ABA) levels within 24 h regardlessof previous storage temperature, although this effect was reversible.Exogenous C2H4, an effective dormancy release agent, also causeddecreased ABA levels within 24 h. It also enhanced dormancyrelease and further promoted ABA losses by gas I. Gas II treatmentled to slight reductions in ABA levels that were further decreasedby C2H4. Sprout length was modelled successfully by multipleregression analysis in terms of glucose and ABA levels withinthe apical eye tissues of Russet Burbank tubers immediatelyafter, and regardless of, previous gas treatments or storagetemperatures. Solanum tuberosum,potato, abscisic acid, ethylene, carbon dioxide, oxygen, dormancy.  相似文献   

3.
Roots of tomato (Lycopersicon esculentum Mill. cv. Bonny Best) were excised and cultured in the presence of the abscisic acid synthesis inhibitor fluridone, and with concentrations of exogenous abscisic acid ranging from 10−10to 10−4M to determine the effects of abscisic acid and its synthesis inhibition on the development of lateral roots in in vitro cultured tomato roots. Exogenous abscisic acid inhibited lateral root initiation and emergence at concentrations of 10−6M and greater. Fluridone (10−6M) enhanced the formation of lateral roots even in the presence of abscisic acid, at all concentrations tested except 10−4M. Abscisic acid increased apical distance, and fluridone reduced it up to 10−5M abscisic acid. Both fluridone and abscisic acid reduced lateral and primary root lengths. It was concluded the endogenous abscisic acid is probably involved in the regulation of lateral root initiation and root apical dominance, and that abscisic acid may affect lateral root initiation differently than lateral root emergence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The germination and ethylene production by dormant Virginia-type peanut seeds were observed in relation to phytohormone treatments that could conceivably release the dormancy of these seeds. A comparison was made between the effects of these treatments on the less dormant apical seeds and the more dormant basal seeds. Indole-3-acetic acid did not stimulate ethylene production by, or germination of, the dormant seeds to any extent. Gibberellic acid at 5 × 10−4 M stimulated ethylene production by apical seeds to 17 millimicroliters per hour and germination to only 40% above the control. The more dormant basal seeds were affected even less by gibberellic acid than the seeds. Ethylene gas at 8 microliters per liter stimulated germination to 85% above the control for both apical and basal seeds. At this ethylene concentration the physiology of the more dormant basal seeds was altered, so that they behaved in a manner similar to the inherently less dormant apical seeds. 2-Chloroethylphosphonic acid at 10−3 and 5 × 10−4 M provided results similar to ethylene gas. Both apical and basal seeds germinated 100% at 48 hours. Among the phytohormones tested in this study, ethylene gas produced the greatest germination at low concentrations, and it appears must directly related to initiating the reactions required for converting the quiescent cells to an active state of growth.  相似文献   

5.
Summary With the objective of using microtubers for conservation of potato germplasm, the main effects of genotype, abscisic acid (ABA), and sucrose level, and of their interactions on biomass production, microtuberization, microtuber dormancy, and dry matter content, were studied. ABA decreased both microtuber production and microtuber dormancy, whereas higher concentrations (60–80 gl−1) of sucrose promoted biomass production, microtuber production as well as microtuber dry matter content. Microtubers stored under diffused light had longer dormancy than those kept continuously in the dark. Interactions among various factors conditioned the main effects for some characters. In vitro performance of the genotypes studied was related to their known performance under in vivo conditions for most of the characters. Microtubers produced on media devoid of ABA and containing high sucrose concentrations and N6-benzyladenine (44.38 μM) could be stored for 12 mo. under diffused light at 6±1°C.  相似文献   

6.
The control of bud dormancy in potato tubers   总被引:5,自引:0,他引:5  
Potato (Solanum tuberosum L.) tuber buds normally remain dormant through the growing season until several weeks after harvest. In the cultivar Majestic, this innate dormancy persisted for 9 to 12 weeks in storage at 10° C, but only 3 to 4 weeks when the tubers were stored at 2° C. At certain stages, supplying cytokinins to tubers with innately dormant buds induced sprout growth within 2 d. The growth rate was comparable to that of buds whose innate dormancy had been lost naturally. Cytokinin-treatment did not accelerate the rates of cell division and cell expansion in buds whose innate dormancy had already broken naturally. Gibberellic acid did not induce sprout growth in buds with innate dormancy. We conclude that cytokinins may well be the primary factor in the switch from innate dormancy to the non-dormant state in potato tuber buds, but probably do not control the subsequent sprout growth.Abbreviations tio 6ade 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)purine, zeatin - tio6ado 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)-9--D-ribofuranosyl purine, zeatin riboside  相似文献   

7.
Effects of the growth regulators epibrassinolide-694 (EB), gibberellic acid (GA), and abscisic acid (ABA) on the ATP-dependent translocation of H+through the membranes of plasma membrane vesicles of potato (Solanum tuberosumL.) tuber cells were studied. The ATP-dependent accumulation of H+in the plasma membrane vesicles from dormant tubers was inhibited by EB and ABA and stimulated by GA. After the break of dormancy, the stimulatory effect of GA increased, the inhibitory effect of ABA decreased, and EB stimulated the accumulation of H+in the vesicles. The data suggest that the plasma membrane H+ATPase is a target of phytohormones that regulate the dormancy of potato tubers.  相似文献   

8.
Treatment of intact potato (Solanum tuberosum L., cv. Nevskii) tubers with 24-epibrassinolide (EB) resulted in prolonged deep dormancy, increased production of ethylene and higher contents of free and bound abscisic acid (ABA) in buds. EB at the most efficient concentration 0.021 mg dm–3, applied immediately after tuber harvest, inhibited sprouting by 36 – 38 d, increased ethylene formation after 1 and 7 d of storage by almost 300 and 150%, respectively, and increased the content of both free and bound ABA during the whole period of storage (on average by about 80%). Electron microscopic and morphometric studies showed that EB brings about a decrease in cell volume in tunica and all types of meristems and an increase in the number of vacuoles, accompanied by a decrease in their volume.  相似文献   

9.
Effects of environmental conditions and growth regulators on release from dormoncy of axillary turions inHydrilla verticillata were investigated. Coll treatment at 2 C for 33 days produced the most complete release from dormancy. One week of 2 C treatment was sufficient for the germination; however, longer cold periods produced more rapid growth in shoot or root lengths as well as a shorter lag time for germination. Dormancy in turions could be broken by a photoperiod of 16 hr but not by on of 8 or 12 hr, nor by continuous lighting. When a cold treatment was applied turions grew out in response to all of the photoperiodic conditions. Red and far-red irradiation during the incubation after a cold treatment promoted gremination; blue and green light markedly inhibited the germination. At 10−4 and 10−5 M, gibberellic acid broke dormancy of non-cold treated turions, but was toxic at 10−4 M to the development after germination. Gibberellic acid promoted growth of cold treated turions even at 10−6 M. Indoleacetic acid at 10−4, 10−5 and 10−6 M induced outgrowth of both non-cold treated and cold treated turions. Apparently normal growth and development was observed in a high concentration of indoleacetic acid.  相似文献   

10.
Methyl ester of jasmonic acid (Me-JA) influences the induced resistance of potato tubers to late blight caused byPhytophthora infestans. Treatment of potato tuber disk surfaces with Me-JA solution or exposure to an atmosphere containing Me-JA vapors (10−6–10−5 M) increased the rate of rishitin biosynthesis induced by arachidonic acid orP. infestans. Methyl jasmonate increased the sensitivity of potato tissue to arachidonic acid. As a result, in the presence of Me-JA, the protective properties of arachidonic acid were observed at lower concentrations than in the absence of Me-JA. In addition, Me-JA reduced the adverse effects of lipoxygenase inhibitors (salicylhydroxamic acid and esculetin) on the induced resistance of potato tubers to late blight. Therefore, the synergistic interaction of Me-JA and biogenic elicitors can be regarded as part of a mechanism of potato defense against diseases.  相似文献   

11.
Action of salicylic acid (SA) on the activity of membrane bound H+-ATPase and passive proton permeability of plasmalemma membrane vesicles (PMV) from parenchyma cells of potato tubers was detected. A correlation between SA action on germination of tubers and activity of plasmalemma H+-ATPase was revealed: the application of growth-stimulating concentrations of SA (10−10–10−8 M) in the system in vitro resulted in activation of plasmalemma H+-ATPase, while the use of growth-inhibiting concentrations (10−4, 10−5 M) provoked inhibition of the enzyme activity. Addition of jasmonic acid (JA) to the incubation mix resulted in increase of SA effect on the accumulation of H+ in PMV.  相似文献   

12.
Abstract The role of abscisic acid (ABA) in banana fruit ripening was examined with the ethylene binding inhibitor, 1-methylcyclopropene (1-MCP). ABA (0, 10−5, 10−4, or 10−3 mol/L) was applied by vacuum infiltration into fruit. 1-MCP (1 μL/L) was applied by injecting a measured volume of stock gas into sealed glass jars containing fruit. Fruit ripening, as judged by ethylene evolution and respiration associated with color change and softening, was accelerated by 10−4 or 10−3 mol/L ABA. ABA at 10−5 mol/L had no effect. The acceleration of ripening by ABA was greater at 10−3 mol/L than at 10−4 mol/L. ABA-induced acceleration of banana fruit ripening was not observed in 1-MCP treated fruit, especially when ABA was applied after exposure to 1-MCP. Thus, ABA's promotion of ripening in intact banana fruit is at least partially mediated by ethylene. Exposure of ABA-treated fruit to 0.1 μL/L ethylene for 24 h resulted in increased ethylene production and respiration, and associated skin color change and fruit softening. Control fruit (no ABA) was unresponsive to similar ethylene treatments. The data suggest that ABA facilitates initiation and progress in the sequence of ethylene-mediated ripening events, possibly by enhancing the sensitivity to ethylene. Received 29 January 1999; accepted 16 January 2000  相似文献   

13.
Method for simultaneous measurement of gibberellic acid was applied using capillary zone electrophoresis. Gibberellic acid was identified in extracts of apical part of thallus of Chara vulgaris L. The amount of gibberellins measured on the basis of activity determined by the micro-drop bioassay (59.8 mg·kg−1; with gibberellic acid as a standard) was comparable with that estimated by capillary electrophoresis (54.9 mg·kg−1).  相似文献   

14.
Sprouting of potatoes during storage, due to tuber dormancy release, is associated with weight loss and softening. Sprout-preventing chemicals, such as chlorpropham (CIPC), can negatively impact the environment and human health. Monthly thermal fogging with mint (Mentha spicata L.) essential oil (MEO) inhibited sprouting in eight potato cultivars during large-volume 6-month storage: the tubers remained firm with 38% lower weight loss after 140 days of storage. The sprout-inhibitory action may be nullified: treated tubers washed with water resumed sprouting within days, with reduced apical dominance. MEO application caused local necrosis of the bud meristem, and a few weeks later, axillary bud (AX) growth was induced in the same sprouting eye. MEO components analysis showed that 73% of its content is the monoterpene R-carvone. Tubers treated with synthetic R-carvone in equivalent dose, 4.5 μl l−1, showed an inhibitory effect similar to that of MEO. Surprisingly, 0.5 μl l−1 of MEO or synthetic R-carvone catalyzed AX sprouting in the tuber. To the best of our knowledge, this is the first report of an essential oil vapor inducing early sprouting of potato tubers. R-carvone caused visible damage to the meristem membrane at sprout-inhibiting, but not sprout-inducing doses, suggesting different underlying mechanisms. After 5 days’ exposure to R-carvone, its derivatives transcarveol and neo-dihydrocarveol were found in buds of tubers treated with the inhibitory dose, suggesting biodegradation. These experiments demonstrate the potential of MEO vapor as an environmentally friendly alternative to CIPC in stored potatoes and as a research tool for the control of sprouting in plants.  相似文献   

15.
Two litchi cultivars, a well-coloured ‘Nuomici’ and a poorly coloured ‘Feizixiao’, were used to investigate changes in endogenous abscisic acid (ABA) concentration and ethylene production during fruit maturation and to test the effects of exogenous growth regulators on litchi fruit maturation. Abscisic acid concentration in both the aril and pericarp increased with fruit maturation. Transfusion of ABA into the fruit 3 weeks before harvest accelerated, whereas transfusion of 6-benzyl aminopurine (6-BA) retarded sugar accumulation and pigmentation. The effect of 6-BA was assumed to link with the resultant decrease in ABA. In contrast, 1-aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC oxidase (ACO) activities in the aril remained relatively constant during sugar accumulation. Transfusion of aminooxyacetic acid (AOA) significantly decreased ACC concentration but had no effect on sugar accumulation in the aril. These results suggested that endogenous ABA, but not ethylene, was critical for the sugar accumulation. However, the roles of ABA and ethylene in pericarp pigmentation were rather complicated. Application of exogenous ABA promoted anthocyanin synthesis significantly, but had very little effect on chlorophyll degradation. Ethylene production in litchi fruit decreased with development, but a transient increase of endogenous ethylene production was detected just around the colour break in ‘Nuomici’. Enhanced ACO activity in the pericarp was detected during pigmentation. Ethrel at 400 mg l−1 showed no effect on pericarp coloration, but accelerated chlorophyll degradation and anthocyanin synthesis at a much higher concentration (800 mg l−1). Fruit dipped in ABA solution alone yielded no effect on chlorophyll degradation, but the combined use of ABA and Ethrel at 400 mg l−1 enhanced both chlorophyll degradation and anthocyanin synthesis. These results indicated the possible synergistic action of ethylene and ABA during litchi fruit colouration. ABA is suggested to play a more crucial role in anthocyanin synthesis, while ethylene is more important in chlorophyll degradation. ABA can increase the sensitivity of pericarp tissue to ethylene.  相似文献   

16.
In this study a Brazilian granulovirus strain, PhopGV, isolated from the potato tuber moth (PTM) Phthorimaea operculella, was investigated regarding its potential for biological control and in vivo production. The relationship between mortality of P. operculella larvae and virus concentration was determined at different temperatures on potato tubers and susceptibility of P. operculella to PhopGV was also determined on potato leaves. Virulence of PhopGV to P. operculella was not affected by temperatures from 18 to 30°C. The median lethal concentration (LC50) of larvae fed on potato foliage treated with PhopGV was not higher than that verified with larvae fed on treated tubers. Optimal conditions for production of virus-infected larvae were obtained by using the virus suspensions of 41 × 105, 6.3 × 105 and 62 × 105 OBs ml−1 at 18, 24 and 30°C, which resulted in 32.0, 31.4 and 34.8% of infected larvae collected, respectively. The maximum percentage of infected larvae recovered from tubers was not affected by temperature. However, time for production of virus-infected larvae was longer at 18°C and shorter at 30°C. Persistence of PhopGV was determined on stored tubers and we observed that the virus remained effective for at least two months, causing up to 84.2% mortality of P. operculella at 1 × 107 OBs ml−1. The pathogen was also highly virulent to tomato pinworm, Tuta absoluta, inflicting high percentage of mortality, delaying larval growth and inhibiting pupation. This Brazilian PhopGV strain has potential to control PTM larvae on potato tubers at a broad range of temperature and can be produced in vivo using virus-treated tubers.  相似文献   

17.
Summary The effects of fusaric acid (5-n-butylpicolinic acid), picolinic acid (2-pyridine carboxylic acid), and picloram (4-amino-3, 5, 6-trichloropicolinic acid) on endogenous ethylene production by tomato cuttings and elongation growth of oat coleoptile sections were measured. Ethylene production by tomato cuttings was substantially stimulated by treatment with 1×10−3 and 1×10−5 M picoloram and to a lesser extent by 1×10−3 M fusaric acid; picolinic acid had little effect. The ethylene levels produced in response to fusaric acid are not high enough to account for the ethylene injury observed in Fusarium wilt. Fusaric acid inhibited oat coleoptile extension, picolinic acid had little effect, and picloram promoted growth.  相似文献   

18.
The time course of accumulation and the composition of proteinase-inhibiting proteins in diffusates from potato tubers treated with elicitors such as salicylic, jasmonic, and arachidonic acids were studied. The 40-kDa reserve protein patatin and the chymotrypsin inhibitors, among which proteins of 24.6, 22.0, and 16.0 kDa were prevalent, accumulated in diffusates from potato tubers. Jasmonic and arachidonic acids activated the accumulation of the chymotrypsin inhibitors in tubers in response to the injury stress, whereas salicylic acid inhibited this process. The effects of jasmonic and arachidonic acids increased when their concentrations decreased to 10–6M. Salicylic acid inhibited this process. The data suggest an important role of the lipoxygenase metabolism in signal transduction of the anti-injury defense system in dormant potato tubers.  相似文献   

19.
Gibberellic acid-induced synthesis and release of α-amylase in barley aleurone tissue was inhibited by abscisic acid. This inhibition was relieved by simultaneous application of ethylene ranging in concentration from 0.1 to 100 microliters per liter. When CO2 was applied, it eliminated the effect of 0.1 microliter per liter ethylene and reimposed the abscisic acid inhibition. All concentrations of CO2 tested from 400 to 105 microliters per liter counteracted the effect of 0.1 microliter per liter ethylene, but had no observable effect on any higher concentration of ethylene. The results indicate that some processes necessary for embryo growth may be subject to regulation by ethylene and carbon dioxide at naturally occurring concentrations of the gases.  相似文献   

20.
Senescence of Flag Leaves and Ears of Wheat Hastened by Methyl Jasmonate   总被引:6,自引:0,他引:6  
Treatment of flag leaves and ears of wheat plants with MJ (jasmonic acid methylester) (10−5 and 10−4 m) did not increase ethylene production, but it did accelerate senescence as indicated by the loss of chlorophyll. MJ also caused the closure of stomata, and consequently the rates of transpiration and photosynthesis decreased. Early maturity shortened the grain filling period, so the thousand grain weight was lower. Although ethylene elicited the same physiologic effects, the syndrome of senescence by MJ is independent of the former. We conclude that senescence and death in wheat are far from being elucidated; however, MJ and ethylene seem to participate in the phenomenon. Received July 10, 1997; accepted January 5, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号