首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant–soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4‐year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity–productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on “home” than on “away” soils. Nine‐species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%–29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits.  相似文献   

2.
3.
Plant–soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short‐term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non‐native species, or a mixed plant community in different plots in a common‐garden experiment. After 4 years, plants were removed and one native and one non‐native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non‐native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non‐native, Centaurea diffusa, and non‐native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata. Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common‐garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non‐native plant community on non‐native soils. In contrast, when PSF effects were removed, the model predicted that non‐native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank‐order abundance of native and non‐native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors through soil‐mediated effects.  相似文献   

4.
Recent empirical studies have found evidence of increased biomass production ('overyielding') in species mixtures relative to monoculture, but the interpretation of these results remains controversial, in part, because of the lack of a theoretical expectation. Here, we examined the expected frequency and stability of overyielding species mixtures using Lotka-Volterra models of species dynamics in two- and four-species systems in conjunction with community, population, and specific rate of biomass production (SRP) definitions of overyielding. Overyielding plant mixtures represented > 55% of potential species assemblages under community definitions and approximately 100% of species were either overyielding or underyielding under the population definition. Our species simulations approached their equilibria in 1-2 yr, supporting the relevancy of an equilibrial analysis. The range of parameter space that we explored produced realistic values of plot biomass, supporting their biological relevance. We show that overyielding is expected to be common under community definitions and population definitions. Overyielding, under community or population definitions, does not imply an actual increase in the specific rate of biomass production. In addition, assemblages of overyielding and underyielding species under all three definitions can be stable over time with underyielding species persisting in the presence of overyielding species.  相似文献   

5.
Decreasing species diversity is thought to both reduce community productivity and increase invasibility to other species. However, it remains unclear whether identical mechanisms drive both diversity-productivity and diversity-invasibility relationships. We found a positive diversity-productivity relationship and negative diversity-invasibility and productivity-invasibility relationships using microcosm communities constructed from spatial niche specialist genotypes of the bacterium Pseudomonas fluorescens. The primary mechanism driving these relationships was a dominance (or selection) effect: more diverse communities were more likely to contain the most productive and least invasible type. Statistical elimination of the dominance effect greatly weakened the diversity-invasibility relationship and eliminated the diversity-productivity relationship, but also revealed the operation of additional mechanisms (niche complementarity, positive and negative interactions) for particular combinations of niche specialists. However, these mechanisms differed for invasibility and productivity responses, resulting in the invasibility-productivity relationship changing from strongly negative to weakly positive. In the absence of the dominance effect, which may be an experimental artefact, decreasing diversity can have unexpected or no effects on ecosystem properties.  相似文献   

6.
Aims Diversity–productivity relationships among herbaceous species have mostly been studied in grasslands, while less is known about diversity effects among weedy species with a short life cycle.Methods We studied diversity–productivity relationships, shoot density, size and allometry in experimental communities of different species richness (one, three, six, and nine species), functional group number (one to three functional groups: grasses, small herbs and tall herbs) and functional group evenness (even and uneven number of species per functional group) based on a pool of nine arable weed species with a short life cycle in a 2-year experiment.Important findings Higher species richness increased above- and belowground biomass production in both years of the experiment. Additive partitioning showed that positive selection effects increased with increasing species richness and functional group number, while positive complementarity effects were greater when tall herbs were present. Relative yield totals were larger than 1 across all species richness levels but did not increase with species richness, which is consistent with constant positive complementarity effects. Community biomass production and diversity effects increased in the second year of the experiment, when communities achieved greater shoot densities and average shoot sizes. At the community level, varying productivity was mainly attributable to variation in mean shoot sizes. Tall herbs reached greater observed/expected relative yields (=overyielding) due to increased shoot sizes, underyielding of small herbs was mainly attributable to decreased shoot sizes, while grasses partly compensated for reduced shoot sizes by increasing densities. Shifts in community-level density–size relationships and changes in shoot allometry in favour of greater height growth indicated that a greater biomass at a given density was due to increased dimensions of occupied canopy space. We conclude that diversity effects are also possible among short-lived arable weed species, but selection effects through sizes differences among species are key for positive species richness–productivity relationships.  相似文献   

7.
Which processes drive the productivity benefits of biodiversity remain a critical, but unanswered question in ecology. We tested whether the soil microbiome mediates the diversity‐productivity relationships among late successional plant species. We found that productivity increased with plant richness in diverse soil communities, but not with low‐diversity mixtures of arbuscular mycorrhizal fungi or in pasteurised soils. Diversity‐interaction modelling revealed that pairwise interactions among species best explained the positive diversity‐productivity relationships, and that transgressive overyielding resulting from positive complementarity was only observed with the late successional soil microbiome, which was both the most diverse and exhibited the strongest community differentiation among plant species. We found evidence that both dilution/suppression from host‐specific pathogens and microbiome‐mediated resource partitioning contributed to positive diversity‐productivity relationships and overyielding. Our results suggest that re‐establishment of a diverse, late successional soil microbiome may be critical to the restoration of the functional benefits of plant diversity following anthropogenic disturbance.  相似文献   

8.
Plant‐soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta‐analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 ≤ r¯ ≤ 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance‐PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness.  相似文献   

9.
Plant-soil feedbacks: a meta-analytical review   总被引:2,自引:0,他引:2  
Plants can change soil biology, chemistry and structure in ways that alter subsequent plant growth. This process, referred to as plant–soil feedback (PSF), has been suggested to provide mechanisms for plant diversity, succession and invasion. Here we use three meta-analytical models: a mixed model and two Bayes models, one correcting for sampling dependence and one correcting for sampling and hierarchical dependence (delta-splitting model) to test these hypotheses. All three models showed that PSFs have medium to large negative effects on plant growth, and especially grass growth, the life form for which we had the most data. This supports the hypothesis that PSFs, through negative frequency dependence, maintain plant diversity, especially in grasslands. PSFs were also large and negative for annuals and natives, but the delta-splitting model indicated that more studies are needed for these results to be conclusive. Our results support the hypotheses that PSFs encourage successional replacements and plant invasions. Most studies were performed using monocultures of grassland species in greenhouse conditions. Future research should examine PSFs in plant communities, non-grassland systems and field conditions.  相似文献   

10.
Species’ extinctions have spurred debate on whether interactions among few or among many species cause a positive diversity–productivity relationship in experimentally assembled grasslands. We addressed this question by quantifying the productivity of 14 species across an experimental diversity gradient in Minnesota. We found that interspecific interactions leading to coexistence and competitive displacement both determine which species overyield; i.e. are more productive at high diversity. Overyielding species were either superior N competitors (C4 grasses) or N fixers (legumes). Surprisingly, these species were not most productive in monoculture, thus, the ‘selection’ of productive species in diverse plots did not cause the positive diversity–productivity relationship. Both positive (with legumes) and negative interspecific interactions (with C4 grasses) determined whether individual species overyielded. Foliar pathogens did not cause overyielding, although other natural enemies may be responsible. Overyielding species are not displacing underyielding species over time, implying that other diversity‐promoting interactions also operate in this experiment.  相似文献   

11.
One robust result from many small-scale experiments has been that plant community productivity often increases with increasing plant diversity. Most frequently, resource-based or competitive interactions are thought to drive this positive diversity-productivity relationship. Here, we ask whether suppression of plant productivity by soil fungal pathogens might also drive a positive diversity-productivity relationship. We created plant assemblages that varied in diversity and crossed this with a ± soil fungicide treatment. In control (non-fungicide treated) assemblages there was a strong positive relationship between plant diversity and above-ground plant biomass. However, in fungicide-treated assemblages this relationship disappeared. This occurred because fungicide increased plant production by an average of 141% at the lower ends of diversity but boosted production by an average of only 33% at the higher ends of diversity, essentially flattening the diversity-productivity curve. These results suggest that soil pathogens might be a heretofore unappreciated driver of diversity-productivity relationships.  相似文献   

12.
Light partitioning in experimental grass communities   总被引:1,自引:0,他引:1  
Through complementary use of canopy space in mixtures, aboveground niche separation has the potential to promote species coexistence and increase productivity of mixtures as compared to monocultures. We set up an experiment with five perennial grass species which differed in height and their ability to compete for light to test whether plants partition light under conditions where it is a limiting resource, and if this resource partitioning leads to increased biomass production in mixtures (using relative yield-based methods). Further, we present the first application of a new model of light competition in plant communities. We show that under conditions where biomass production was high and light a limiting resource, only a minority of mixtures outperformed monocultures and overyielding was slight. The observed overyielding could not be explained by species differences in canopy structure and height in monoculture and was also not related to changes in the canopy traits of species when grown in mixture rather than monoculture. However, where overyielding occurred, it was associated with higher biomass density and light interception. In the new model of competition for light, greater light use complementarity was related to increased total energy absorption. Future work should address whether greater canopy space-filling is a cause or consequence of overyielding.  相似文献   

13.
Overyielding among plant functional groups in a long-term experiment   总被引:12,自引:0,他引:12  
A recent debate among ecologists has focused on mechanisms by which species diversity might affect net primary productivity. Communities with more species could use a greater variety of resource capture characteristics, leading to greater use of limiting resources (complementarity) and therefore greater productivity (overyielding). Recent experiments, however, have shown a variety of relationships between diversity and productivity. In an experiment on serpentine grassland communities spanning 8 years, we found that overyielding increased several years after plot establishment. Overyielding varied greatly depending on the functional characteristics of the species involved and the biotic and abiotic environment (particularly water availability). While functional differences among species led to strong complementarity and facilitation, these effects were not sufficient to cause significant transgressive overyielding or consistent increases in productivity with increased plant diversity. These results suggest that greater absolute production with greater diversity may be restricted to particular species combinations or environmental conditions.  相似文献   

14.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   

15.
The causal relationship between the biodiversity of natural and modified environments and their net primary production has been a topic of significant scientific controversy and scrutiny. Early theoretical and empirical results indicated that production was sometimes significantly correlated with species richness when species richness was directly manipulated in experimental systems. Possible mechanisms for this phenomenon include statistical sampling effects, complementary resource use and mutualistic interactions. However, the interpretation of experimental results has sometimes confounded species richness with species composition, and disentangling the effects of species diversity from species identity has proved a formidable challenge. Here, I present a statistical method that is based on simple probability models and does not rely on the species composition of individual plots to distinguish among three phenomena that occur in biodiversity-production experiments: underyielding, overyielding and (a new concept) superyielding. In some cases, distinguishing these phenomena will provide evidence for underlying mechanisms. As a proof-of-concept, I first applied this technique to a simulated dataset, indicating the strengths of the method with both clear and ambiguous cases. I then analysed data from the BIODEPTH experimental biodiversity manipulations. No evidence of either overyielding or superyielding was detected in the BIODEPTH experiment.  相似文献   

16.
We studied the temporal variability and resistance to perturbation of the biomass production of grassland communities from an experimental diversity gradient (the Portuguese BIODEPTH project site). With increasing species richness relative temporal variability (CV) of plant populations increased but that of communities decreased, supporting the insurance hypothesis and related theory. Species‐rich communities were more productive than species‐poor communities in all three years although a natural climatic perturbation in the third year (frequent frost and low precipitation) caused an overall decrease in biomass production. Resistance to this perturbation was constant across the experimental species richness gradient in relative terms, supporting a similar response from the Swiss BIODEPTH experiment. The positive biomass response was generated by different combinations of the complementarity and selection effects in different years. Complementarity effects were positive across mixtures on average in all three years and positively related to diversity in one season. The complementarity effect declined following perturbation in line with total biomass but, counter to predictions, in relative terms overyielding was maintained in all years. Selection effects were positively related to diversity in one year and negative overall in the other two years. The response to perturbation varied among species and for the same species growing in monoculture and mixture, but following the frost communities were more strongly dominated by species with lower monoculture biomass and the selection effect was more negative. In total, our results support previous findings of a positive relationship between diversity and productivity and between diversity and the temporal stability of production, but of no effect of diversity on the resistance to perturbation. We demonstrate for the first time that the relative strength of overyielding remained constant during an exceptional natural environmental perturbation.  相似文献   

17.
One of the few laws in ecology is that communities consist of few common and many rare taxa. Functional traits may help to identify the underlying mechanisms of this community pattern, since they correlate with different niche dimensions. However, comprehensive studies are missing that investigate the effects of species mean traits (niche position) and intraspecific trait variability (ITV, niche width) on species abundance. In this study, we investigated fragmented dry grasslands to reveal trait‐occurrence relationships in plants at local and regional scales. We predicted that (a) at the local scale, species occurrence is highest for species with intermediate traits, (b) at the regional scale, habitat specialists have a lower species occurrence than generalists, and thus, traits associated with stress‐tolerance have a negative effect on species occurrence, and (c) ITV increases species occurrence irrespective of the scale. We measured three plant functional traits (SLA = specific leaf area, LDMC = leaf dry matter content, plant height) at 21 local dry grassland communities (10 m × 10 m) and analyzed the effect of these traits and their variation on species occurrence. At the local scale, mean LDMC had a positive effect on species occurrence, indicating that stress‐tolerant species are the most abundant rather than species with intermediate traits (hypothesis 1). We found limited support for lower specialist occurrence at the regional scale (hypothesis 2). Further, ITV of LDMC and plant height had a positive effect on local occurrence supporting hypothesis 3. In contrast, at the regional scale, plants with a higher ITV of plant height were less frequent. We found no evidence that the consideration of phylogenetic relationships in our analyses influenced our findings. In conclusion, both species mean traits (in particular LDMC) and ITV were differently related to species occurrence with respect to spatial scale. Therefore, our study underlines the strong scale‐dependency of trait‐abundance relationships.  相似文献   

18.
Soil legacy effects are commonly highlighted as drivers of plant community dynamics and species co‐existence. However, experimental evidence for soil legacy effects of conditioning plant communities on responding plant communities under natural conditions is lacking. We conditioned 192 grassland plots using six different plant communities with different ratios of grasses and forbs and for different durations. Soil microbial legacies were evident for soil fungi, but not for soil bacteria, while soil abiotic parameters did not significantly change in response to conditioning. The soil legacies affected the composition of the succeeding vegetation. Plant communities with different ratios of grasses and forbs left soil legacies that negatively affected succeeding plants of the same functional type. We conclude that fungal‐mediated soil legacy effects play a significant role in vegetation assembly of natural plant communities.  相似文献   

19.
Heinz Ellenberg''s historically important work on changes in the abundances of a community of grass species growing along experimental gradients of water table depth has played an important role in helping to identify the hydrological niches of plant species in wet meadows. We present a previously unpublished complete version of Ellenberg''s dataset from the 1950s together with the results of a series of modern statistical analyses testing for hypothesized overyielding of aboveground net primary production as a consequence of resource-based niche differentiation. Interactions of species with water table depth and soil type in the results of our analyses are qualitatively consistent with earlier interpretations of evidence for differences in the fundamental and realized niches of species. Arrhenatherum elatius tended to dominate communities and this effect was generally positively related to increasing water table depth. There was little overyielding of aboveground net primary production during the two repeats of the experiment conducted in successive single growing seasons. Examination of how the effects of biodiversity on ecosystem processes vary across environmental gradients is an underutilized approach – particularly where the gradient is thought to be an axis of niche differentiation as is the case with water availability. Furthermore, advances in ecology and statistics during the 60 years since Ellenberg''s classic experiment was performed suggest that it may be worth repeating over a longer duration and with modern experimental design and methodologies.  相似文献   

20.
Changes in plant community structure after changes in some aspect of the environment such as nutrients or grazing is often ascribed to changes in competitive relationships among the plants. However, very rarely is competition measured directly in such experiments. To distinguish between the direct effects of environmental treatments and changes in competitive relationships, it is necessary to quantify the influence of competition on community structure and compare the magnitude and direction of this influence between environments. We describe an experimental approach to accomplish this that is based on the classic yield-density experiment of agronomy. The approach is called the community-density experiment and requires experimental establishment of a gradient in total initial community density such that absolute densities of each species increase but initial relative abundances of each species stay constant along the gradient. We define various indices of the magnitude of community-level consequences of increasing density that can be compared among environments such as different fertilizer or grazing treatments. We also discuss various practical ways of achieving the experimental density gradient that are suitable for different kinds of communities. *** DIRECT SUPPORT *** A02DO006 00011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号