首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of bird species swim underwater by wing propulsion.Both among and within species, thrust generated during the recoveryphase (upstroke) varies from almost none to more than duringthe power phase (downstroke). More uneven thrust and unsteadyspeed may increase swimming costs because of greater inertialwork to accelerate the body fuselage (head and trunk), especiallywhen buoyant resistance is high during descent. I investigatedthese effects by varying relative fuselage speed during upstrokevs. downstroke in a model for wing-propelled murres which descendat relatively constant mean speed. As buoyant resistance declinedwith depth, the model varied stroke frequency and glide durationto maintain constant mean descent speed, stroke duration, andwork per stroke. When mean fuselage speed during the upstrokewas only 18% of that during the downstroke, stroke frequencywas constant with no gliding, so that power output was unchangedthroughout descent. When mean upstroke speed of the fuselagewas raised to 40% and 73% of mean downstroke speed, stroke frequencydeclined and gliding increased, so that power output decreasedrapidly with increasing depth. Greater inertial work with moreunequal fuselage speeds was a minor contributor to differencesin swimming costs. Instead, lower speeds during upstrokes requiredhigher speeds during downstrokes to maintain the same mean speed,resulting in nonlinear increases in drag at greater fuselagespeeds during the power phase. When fuselage speed was relativelyhigher during upstrokes, lower net drag at the same mean speedincreased the ability to glide between strokes, thereby decreasingthe cost of swimming.  相似文献   

2.
Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (~0.3 kg) and small birds with rounded wings do not use intermittent glides.  相似文献   

3.
John  Brackenbury 《Journal of Zoology》1990,220(4):593-602
The movements of the wings during natural jumps made by Tettigonia viridissima and Ameles spallanziana were analysed by means of high-speed flash photography. Additional data were obtained from the bush-cricket Oecanthus pellucens . In all cases the wings were usually extended before the hind tarsi had left the ground. In most jumps the first downstroke of the wings was completed before take-off and the wings probably contributed directly to initial propulsion. All species showed a 'peel' variation of the 'clap and fling' mechanism in the hind wing downstroke. There was evidence of strong ventral flexure in the forewing at the start of the upstroke in Tettigonia . The implications of the use of the wings in the energetics of jumping are discussed.  相似文献   

4.
Biomechanics and physiology of gait selection in flying birds   总被引:1,自引:0,他引:1  
Two wing-beat gaits, distinguished by the presence or absence of lift production during the upstroke, are currently used to describe avian flight. Vortex-visualization studies indicate that lift is produced only during the downstroke in the vortex-ring gait and that lift is produced continuously in the continuous-vortex gait. Tip-reversal and feathered upstrokes represent different forms of vortex-ring gait distinguished by wing kinematics. Useful aerodynamic forces may be produced during tip-reversal upstroke in slow flight and during a feathered upstroke in fast flight, but it is probable that downstroke forces are much greater in magnitude. Uncertainty about the function of these types of upstroke may be resolved when more data are available on wake structure in different flight speeds and modes. Inferring from wing kinematics and available data on wake structure, birds with long wings or wings of high aspect ratio use a vortex-ring gait with tip-reversal upstroke at slow speeds, a vortex-ring gait with a feathered upstroke at intermediate speeds, and a continuous-vortex gait at fast speeds. Birds with short wings or wings of low aspect ratio use a vortex-ring gait with a feathered upstroke at all speeds. Regardless of wing shape, species tend to use a vortex-ring gait for acceleration and a continuous-vortex gait for deceleration. Some correlations may exist between gait selection and the function of the muscular and respiratory system. However, overall variation in wing kinematics, muscle activity, and respiratory activity is continuous rather than categorical. To further our understanding of gait selection in flying birds, it is important to test whether upstroke function varies in a similar manner. Transitions between lifting and nonlifting upstrokes may be more subtle and gradual than implied by a binomial scheme of classification.  相似文献   

5.
The effect of wing flexibility on aerodynamic force production has emerged as a central question in insect flight research. However, physical and computational models have yielded conflicting results regarding whether wing deformations enhance or diminish flight forces. By experimentally stiffening the wings of live bumblebees, we demonstrate that wing flexibility affects aerodynamic force production in a natural behavioural context. Bumblebee wings were artificially stiffened in vivo by applying a micro-splint to a single flexible vein joint, and the bees were subjected to load-lifting tests. Bees with stiffened wings showed an 8.6 per cent reduction in maximum vertical aerodynamic force production, which cannot be accounted for by changes in gross wing kinematics, as stroke amplitude and flapping frequency were unchanged. Our results reveal that flexible wing design and the resulting passive deformations enhance vertical force production and load-lifting capacity in bumblebees, locomotory traits with important ecological implications.  相似文献   

6.
Most hovering animals, such as insects and hummingbirds, enhance lift by producing leading edge vortices (LEVs) and by using both the downstroke and upstroke for lift production. By contrast, most hovering passerine birds primarily use the downstroke to generate lift. To compensate for the nearly inactive upstroke, weight support during the downstroke needs to be relatively higher in passerines when compared with, e.g. hummingbirds. Here we show, by capturing the airflow around the wing of a freely flying pied flycatcher, that passerines may use LEVs during the downstroke to increase lift. The LEV contributes up to 49 per cent to weight support, which is three times higher than in hummingbirds, suggesting that avian hoverers compensate for the nearly inactive upstroke by generating stronger LEVs. Contrary to other animals, the LEV strength in the flycatcher is lowest near the wing tip, instead of highest. This is correlated with a spanwise reduction of the wing's angle-of-attack, partly owing to upward bending of primary feathers. We suggest that this helps to delay bursting and shedding of the particularly strong LEV in passerines.  相似文献   

7.
Flightlessness has evolved independently in at least 11 extant avian families. A number of hypotheses have been proposed to explain these transitions in individual families, including release from predation on oceanic islands, energetic costs of flight and use of forelimbs for activities other than flying. Few studies have sought to explore factors common to all families containing flightless species, which may explain the taxonomic distribution of flightlessness. In this study, we found that for all eight avian families which contain both flightless and flighted species, the flighted species have shorter wing lengths relative to body mass than their sister families. This result is not biased by taxon size. Models of avian aerodynamics predict that birds with relatively short wings pay a high energetic cost of flight. We suggest that these increased energetic costs of flying predispose these avian families to evolve flightless species. The various causes for the shortening of wings among flighted species of birds and the possibility of future transitions to flightlessness are discussed.  相似文献   

8.
Visualization experiments with Manduca sexta have revealed the presence of a leading-edge vortex and a highly three-dimensional flow pattern. To further investigate this important discovery, a scaled-up robotic insect was built (the ''flapper'') which could mimic the complex movements of the wings of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing revealed a small but strong leading-edge vortex on the downstroke. This vortex had a high axial flow velocity and was stable, separating from the wing at approximately 75 per cent of the wing length. It connected to a large, tangled tip vortex, extending back to a combining stopping and starting vortex from pronation. At the end of the downstroke, the wake could be approximated as one vortex ring per wing. Based on the size and velocity of the vortex rings, the mean lift force during the downstroke was estimated to be about 1.5 times the body weight of a hawkmoth, confirming that the downstroke is the main provider of lift force.  相似文献   

9.
John  Brackenbury 《Journal of Zoology》1991,223(2):341-356
High-speed flash photography was used to analyse wing movements of Mantis religiosa and Iris oratoria at the moment of take-off during natural leaping. Wing kinematics are compared with those of the similarly designed locust wing. Iris oratoria showed strong coupling between leg extensor and wing depressor muscle activity immediately prior to take-off, with a possible enhancement of jump momentum. A 'clap and peel' was observed in the hind wings of both species during the first downstroke. Supination in the mantid forewing is accomplished by a backward rotation of the whole of the main wing plate about the claval furrow. Both fore- and hind wings show pronounced ventral flexure at the lower point of stroke reversal. Camber was developed in the hind wing during the upstroke as well as the downstroke. Possible roles of the claval furrow and transverse flexion in protecting the forewing base against torsional forces generated at stroke reversal are discussed.  相似文献   

10.
Kinematics of take-off and climbing flight in butterflies   总被引:1,自引:0,他引:1  
High speed flash photography (flash duration 0.1 ms) was used to analyse wing movements in over 30 species of butterfly. With few exceptions, the insects showed a clap and peel mechanism of lift production at the start of the downstroke. Early in the upstroke the wings showed pronounced ventral flexure which, combined with inertial lag in the posterior parts of both wing pairs and delayed supination in the hind wing, led to the formation of a funnel-like space between the wings. These movements, and the resultant airflow patterns, appear to be an axi-symmetric equivalent of the 'near' clap and peel (here referred to as the funnel). Hind wing movements throughout the stroke are hinged upon the claval furrow. The expanded anal lobes of the hind wing lying medially to the claval furrow help to provide an air-tight seal around the abdomen between the upper and lower wing surfaces, which increases the efficiency of the peel and funnel mechanisms. The role of the intercalary flexion lines in controlling changes in wing surface corrugation during the cycle is also investigated.  相似文献   

11.
Aerodynamic characteristics of the beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and flexible hind wings,are investigated.Visualization experiments were conducted for various flight conditions of a beetle,Trypoxylus dichotomus:free,tethered,hovering,forward and climbing flights.Leading edge,trailing edge and tip vortices on both wings were observed clearly.The leading edge vortex was stable and remained on the top surface of the elytron for a wide interval during the downstroke of free forward flight.Hence,the elytron may have a considerable role in lift force generation of the beetle.In addition,we reveal a suction phenomenon between the gaps of the hind wing and the elytron in upstroke that may improve the positive lift force on the hind wing.We also found the reverse clap-fling mechanism of the T.dichotomus beetle in hovering flight.The hind wings touch together at the beginning of the upstroke.The vortex generation,shedding and interaction give a better understanding of the detailed aerodynamic mechanism of beetle flight.  相似文献   

12.
The excursions of wing elements and the activity of eleven shoulder muscles were studied by cineradiography and electromyography in European starlings (Sturnus vulgaris) flying in a wind tunnel at speeds of 9–20 m s?1. At the beginning of downstroke the humerus is elevated 80–90° above horizontal, and both elbow and wrist are extended to 90° or less. During downstroke, protraction of the humerus (55°) remains constant; elbow and wrist are maximally extended (120° and 160°, respectively) as the humerus passes through a horizontal orientation. During the downstroke-upstroke transition humeral depression ceases (at about 20° below horizontal) and the humerus begins to retract. However, depression of the distal wing continues by rotation of the humerus and adduction of the carpometacarpus. Humeral retraction (to within about 30° of the body axis) is completed early in upstroke, accompanied by flexion of the elbow and carpometacarpus. Thereafter the humerus begins to protract as elevation continues. At mid-upstroke a rapid counterrotation of the humerus reorients the ventral surface of the wing to face laterad; extension of the elbow and carpometacarpus are initiated sequentially. The upstroke-downstroke transition is characterized by further extension of the elbow and carpometacarpus, and the completion of humeral protraction. Patterns of electromyographic activity primarily coincide with the transitional phases of the wingbeat cycle rather than being confined to downstroke or upstroke. Thus, the major downstroke muscles (pectoralis, coracobrachialis caudalis, sternocoracoideus, subscapularis, and humerotriceps) are activated in late upstroke to decelerate, extend, and reaccelerate the wing for the subsequent downstroke; electromyographic activity ends well before the downstroke is completed. Similarly, the upstroke muscles (supracoracoideus, deltoideus major) are activated in late downstroke to decelerate and then reaccelerate the wing into the upstroke; these muscles are deactivated by mid-upstroke. Only two muscles (scapulohumeralis caudalis, scapulotriceps) exhibit electromyographic activity exclusively during the downstroke. Starlings exhibit a functional partitioning of the two heads of the triceps (the humerotriceps acts with the pectoralis group, and does not overlap with the scapulotriceps). The biphasic pattern of the biceps brachii appears to correspond to this partitioning.  相似文献   

13.
In bats, the wing membrane is anchored not only to the body and forelimb, but also to the hindlimb. This attachment configuration gives bats the potential to modulate wing shape by moving the hindlimb, such as by joint movement at the hip or knee. Such movements could modulate lift, drag, or the pitching moment. In this study we address: 1) how the ankle translates through space during the wingbeat cycle; 2) whether amplitude of ankle motion is dependent upon flight speed; 3) how tension in the wing membrane pulls the ankle; and 4) whether wing membrane tension is responsible for driving ankle motion. We flew five individuals of the lesser dog-faced fruit bat, Cynopterus brachyotis (Family: Pteropodidae), in a wind tunnel and documented kinematics of the forelimb, hip, ankle, and trailing edge of the wing membrane. Based on kinematic analysis of hindlimb and forelimb movements, we found that: 1) during downstroke, the ankle moved ventrally and during upstroke the ankle moved dorsally; 2) there was considerable variation in amplitude of ankle motion, but amplitude did not correlate significantly with flight speed; 3) during downstroke, tension generated by the wing membrane acted to pull the ankle dorsally, and during upstroke, the wing membrane pulled laterally when taut and dorsally when relatively slack; and 4) wing membrane tension generally opposed dorsoventral ankle motion. We conclude that during forward flight in C. brachyotis, wing membrane tension does not power hindlimb motion; instead, we propose that hindlimb movements arise from muscle activity and/or inertial effects.  相似文献   

14.
We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.  相似文献   

15.
Experimental measurements and analysis of the flight of bats are presented, including kinematic analysis of high-speed stereo videography of straight and turning flight, and measurements of the wake velocity field behind the bat. The kinematic data reveal that, at relatively slow flight speeds, wing motion is quite complex, including a sharp retraction of the wing during the upstroke and a broad sweep of the partially extended wing during the downstroke. The data also indicate that the flight speed and elevation are not constant, but oscillate in synchrony with both the horizontal and vertical movements of the wing. PIV measurements in the transverse (Trefftz) plane of the wake indicate a complex 'wake vortex' structure dominated by a strong wing tip vortex shed from the wing tip during the downstroke and either the wing tip or a more proximal joint during the upstroke. Data synthesis of several discrete realizations suggests a 'cartoon' of the wake structure during the entire wing beat cycle. Considerable work remains to be done to confirm and amplify these results.  相似文献   

16.
Detailed 3-Dimensional (3D) wing kinematics was experimentally presented in free flight of a beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and flexible hind wings.The kinematic parameters such as the wing tip trajectory,angle of attack and camber deformation were obtained from a 3D reconstruction technique that involves the use of two synchronized high-speed cameras to digitize various points marked on the wings.Our data showed outstanding characteristics of deformation and flexibility of the beetle's hind wing compared with other measured insects,especially in the chordwise and spanwise directions during flapping motion.The hind wing produced 16% maximum positive camber deformation during the downstroke.It also experienced twisted shape showing large variation of the angle of attack from the root to the tip during the upstroke.  相似文献   

17.
The skipping flight patterns of three species of Ypthima (Lepidoptera: Nymphalidae) were analyzed using high‐speed video recordings to clarify how wings move and how driving forces are produced. All three species showed a flight pattern that includes a pause that accounts for about 50% of a flap cycle when their wings completely close after each upstroke. The observed pause causes the “skipping” flight trajectory based on the clap–fling mechanism. Pause duration was correlated with upstroke wing motion, suggesting the contribution of the latter to a long pause duration. This is also supported by the temporal relationship between the wing and body motions. The aerodynamic power necessary for the pause flight was calculated for the three species.  相似文献   

18.
In recent decades, the take-off mechanisms of flying animals have received much attention in insect flight initiation. Most of previous works have focused on the jumping mechanism, which is the most common take-off mechanism found in flying animals. Here, we presented that the rhinoceros beetle, Trypoxylus dichotomus, takes offwithout jumping. In this study, we used 3-Dimensional (3D) high-speed video techniques to quantitatively analyze the wings and body kinematics during the initiation periods of flight. The details of the flapping angle, angle of attack of the wings and the roll, pitch and yaw angles of the body were investigated to understand the mechanism of take-off in T. dichotomus. The beetle took off gradually with a small velocity and small acceleration. The body kinematic analyses showed that the beetle exhibited stable take-off. To generate high lift force, the beetle modulated its hind wing to control the angle of attack; the angle of attack was large during the upstroke and small during the downstroke. The legs of beetle did not contract and strongly release like other insects. The hind wing could be con- sidered as a main source of lift for heavy beetle.  相似文献   

19.
<正> In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.  相似文献   

20.
Many insect wings change shape dynamically during the wingbeat cycle, and these deformations have the potential to confer energetic and aerodynamic benefits during flight. Due to the lack of musculature within the wing itself, the changing form of the wing is determined primarily by its passive response to inertial and aerodynamic forces. This response is in part controlled by the wing’s mechanical properties, which vary across the membrane to produce regions of differing stiffness. Previous studies of wing mechanical properties have largely focused on surface or bulk measurements, but this ignores the layered nature of the wing. In our work, we investigated the mechanical properties of the wings of the house cricket (Acheta domesticus) with the aim of determining differences between layers within the wing. Nanoindentation was performed on both the surface and the interior layers of cross-sectioned samples of the wing to measure the Young’s modulus and hardness of the outer- and innermost layers. The results demonstrate that the interior of the wing is stiffer than the surface, and both properties vary across the wing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号