首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

The determination of genetic variation in sperm competitive ability is fundamental to distinguish between post-copulatory sexual selection models based on good-genes vs compatible genes. The sexy-sperm and the good-sperm hypotheses for the evolution of polyandry require additive (intrinsic) effects of genes influencing sperm competitiveness, whereas the genetic incompatibility hypothesis invokes non-additive genetic effects. A male's sperm competitive ability is typically estimated from his fertilization success, a measure that is dependent on the ability of rival sperm competitors to fertilize the ova. It is well known that fertilization success may be conditional to genotypic interactions among males as well as between males and females. However, the consequences of effects arising from the random sampling of sperm competitors upon the estimation of genetic variance in sperm competitiveness have been overlooked. Here I perform simulations of mating trials performed in the context of sibling analysis to investigate whether the ability to detect additive genetic variance underlying the sperm competitiveness phenotype is hindered by the relative nature of fertilization success measurements.  相似文献   

2.
In numerous species, egg chemoattractants play a critical role in guiding sperm towards unfertilized eggs (sperm chemotaxis). Until now, the known functions of sperm chemotaxis include increasing the effective target size of eggs, thereby promoting sperm-egg encounters, and facilitating species recognition. Here, we report that in the broadcast spawning mussel, Mytilus galloprovincialis, egg chemoattractants may play an unforeseen role in sexual selection by enabling sperm to effectively 'choose' between the eggs of different conspecific females. In an initial experiment, we confirmed that sperm chemotaxis occurs in M. galloprovincialis by showing that sperm are attracted towards unfertilized eggs when given the choice of eggs or no eggs in a dichotomous chamber. We then conducted two cross-classified mating experiments, each comprising the same individual males and females crossed in identical male × female combinations, but under experimental conditions that offered sperm 'no-choice' (each fertilization trial took place in a Petri dish and involved a single male and female) or a 'choice' of a female's eggs (sperm were placed in the centre of a dichotomous choice chamber and allowed to choose eggs from different females). We show that male-by-female interactions characterized fertilization rates in both experiments, and that there was remarkable consistency between patterns of sperm migration in the egg-choice experiment and fertilization rates in the no-choice experiment. Thus, sperm appear to exploit chemical cues to preferentially swim towards eggs with which they are most compatible during direct sperm-to-egg encounters. These results reveal that sperm differentially select eggs on the basis of chemical cues, thus exposing the potential for egg chemoattractants to mediate mate choice for genetically compatible partners. Given the prevalence of sperm chemotaxis across diverse taxa, our findings may have broad implications for sexual selection in other mating systems.  相似文献   

3.
Genetic variation among females is likely to influence the outcome of both pre- and post-copulatory sexual selection in Drosophila melanogaster. Here we use association testing to survey natural variation in 10 candidate female genes for their effects on female reproduction. Females from 91 chromosome two substitution lines were scored for phenotypes affecting pre- and post-copulatory sexual selection such as mating and remating rate, propensity to use sperm from the second male to mate, and measures of fertility. There were significant genetic contributions to phenotypic variation for all the traits measured. Resequencing of the 10 candidate genes in the 91 lines yielded 68 non-synonymous polymorphisms which were tested for associations with the measured phenotypes. Twelve significant associations (markerwise P<0.01) were identified. Polymorphisms in the putative serine protease homolog CG9897 and the putative odorant binding protein CG11797 associated with female propensity to remate and met an experimentwise significance of P<0.05. Several other associations, including those impacting both fertility and female remating rate suggest that sperm storage might be an important factor mitigating female influence on sexual selection.  相似文献   

4.
5.
Hermaphroditic animals are poorly represented in the sexual selection literature. This deficiency may reflect our inability to come to grips with hermaphroditism or, alternatively, it could be due to an inherent difference between hermaphrodites and gonochorists. Here we provide a number of reasons why sexual selection on traits related to mate acquisition can be expected to be intrinsically weaker in hermaphrodites. We show that the ''male'' fitness component, which can be increased by sexual selection in hermaphrodites, is only half that of pure males in a gonochorist population. This component can be reduced even further when hermaphrodites self-fertilize. As a result, the potential for sexual selection (ψ) on male characters in hermaphrodites is at most half that of gonochorists. Given a specific mate handling cost, sperm production cost and rate of encountering receptive mates, we calculate the optimal allocation to mate acquisition and sperm. Since both partners of a hermaphroditic pair invest in mate acquisition, hermaphrodites should optimally invest less in mate acquisition. This can further reduce ψ by up to one-half. A higher readiness to mate and high investment in sperm can lead to a further systematic reduction in Ps in hermaphrodites.  相似文献   

6.
Many elasmobranchs have experienced strong population declines, which have been largely attributed to the direct and indirect effects of exploitation. Recently, however, live elasmobranchs are being increasingly valued for their role in marine ecosystems, dive tourism and intrinsic worth. Thus, management plans have been implemented to slow and ultimately reverse negative trends, including shark-specific (e.g. anti-finning laws) to ecosystem-based (e.g. no-take marine reserves) strategies. Yet it is unclear how successful these measures are, or will be, given the degree of depletion and slow recovery potential of most elasmobranchs. Here, current understanding of elasmobranch population recoveries is reviewed. The potential and realized extent of population increases, including rates of increase, timelines and drivers are evaluated. Across 40 increasing populations, only 25% were attributed to decreased anthropogenic mortality, while the majority was attributed to predation release. It is also shown that even low exploitation rates (2-6% per year) can halt or reverse positive population trends in six populations currently managed under recovery plans. Management measures that help restore elasmobranch populations include enforcement or near-zero fishing mortality, protection of critical habitats, monitoring and education. These measures are highlighted in a case study from the south-eastern U.S.A., where some evidence of recovery is seen in Pristis pectinata, Galeocerdo cuvier and Sphyrna lewini populations. It is concluded that recovery of elasmobranchs is certainly possible but requires time and a combination of strong and dedicated management actions to be successful.  相似文献   

7.
A crucial question in sexual selection theory is whether post-copulatory sexual selection reinforces or counteracts conventional pre-copulatory sexual selection. Male body size is one of the traits most generally favoured by pre-copulatory sexual selection; and recent studies of sperm competition often suggest that large male size is also favoured by post-copulatory sexual selection. In contrast to this general pattern, this study shows that pre- and post-copulatory sexual selection act antagonistically on male body size in Gerris lacustris. One large and one small male were kept together with two females in this experiment. Large males had a significant mating advantage, but small males copulated longer and gained higher fertilization success from each mating. Large and small males, however, gained similar reproductive success, and there was no overall correlation between mating success and reproductive success. These results suggest that estimates of male fitness based solely on mating success should be viewed with caution, because of potentially counteracting post-copulatory selection.  相似文献   

8.
Intralocus sexual conflict, which occurs when a trait is selected in opposite directions in the two sexes, is a taxonomically widespread phenomenon. The strongest genetic evidence for a gender load due to intralocus sexual conflict comes from the Drosophila melanogaster laboratory model system, in which a negative genetic correlation between male and female lifetime fitness has been observed. Here, using a D. melanogaster model system, we utilize a novel modification of the 'middle class neighbourhood' design to relax selection in one sex, while maintaining selection in the other. After 26 generations of asymmetrical selection, we observed the expected drop in fitness of the non-selected sex compared to that of the selected sex, consistent with previous studies of intralocus sexual conflict in this species. However, the fitness of the selected sex also dropped compared to the base population. The overall decline in fitness of both the selected and the unselected sex indicates that most new mutations are harmful to both sexes, causing recurrent mutation to build a positive genetic correlation for fitness between the sexes. However, the steeper decay in the fitness of the unselected sex indicates that a substantial number of mutations are gender-limited in expression or sexually antagonistic. Our experiment cannot definitively resolve these two possibilities, but we use recent genomic data and results from previous studies to argue that sexually antagonistic alleles are the more likely explanation.  相似文献   

9.
Seasonal change in the opportunity for sexual selection   总被引:1,自引:0,他引:1  
Environmental and population parameters that influence the strength of sexual selection may vary considerably over the course of the reproductive season. However, the potential for sexual selection frequently fails to translate into variation in reproductive success among individuals. We investigated seasonal changes in variation in reproductive success, measured as the opportunity for sexual selection, using parentage analysis in 20 experimental populations of the European bitterling (Rhodeus amarus, Cyprinidae), a small freshwater fish with a promiscuous, resource-based mating system. We showed that although the largest males sired most offspring over the entire reproductive season, variation in reproductive success and hence the opportunity for sexual selection was low at the start of the season but increased significantly at its end. This seasonal difference probably arose from the superior competitive endurance of large males and from a higher temporal clustering of reproductively active females at the start of the breeding season than later in the season. The spatial distribution of oviposition sites had a negligible effect on the variation in reproductive success. We discuss the potential implications of our results for the importance and strength of sexual selection in natural populations.  相似文献   

10.
Female mate choice behaviour has significant evolutionary consequences, yet its mechanistic origins are not fully understood. Recent studies of female sensory systems have made great strides in identifying internal mechanisms governing female preferences. Only recently, however, have we begun to identify the dynamic genomic response associated with mate choice behaviour. Poeciliids provide a powerful comparative system to examine genomic responses governing mate choice and female preference behaviour, given the great range of mating systems: from female mate choice taxa with ornamental courting males to species lacking male ornamentation and exhibiting only male coercion. Furthermore, they exhibit laboratory-tractable preference responses without sexual contact that are decoupled from reproductive state, allowing investigators to isolate mechanisms in the brain without physiological confounds. Early investigations with poeciliid species (Xiphophorus nigrensis and Gambusia affinis) have identified putative candidate genes associated with female preference response and highlight a possible genomic pathway underlying female social interactions with males linked functionally with synaptic plasticity and learning processes. This network is positively correlated with female preference behaviour in the female mate choice species, but appears inhibited in the male coercive species. This behavioural genomics approach provides opportunity to elucidate the fundamental building blocks, and evolutionary dynamics, of sexual selection.  相似文献   

11.
12.
Sexual selection theory posits that ornamental traits can evolve if they provide individuals with an advantage in securing multiple mates. That male ornamentation occurs in many bird species in which males pair with a single female is therefore puzzling. It has been proposed that extra-pair mating can substantially increase the variance in reproductive success among males in monogamous species, thus increasing the potential for sexual selection. We documented the frequency of extra-pair paternity and examined its effect on variation in male reproductive success in the mountain bluebird Sialia currucoides , a socially monogamous songbird in which males possess brilliant plumage ornamentation. Extra-pair paternity was common in our Wyoming study population, with 72% of broods containing at least one extra-pair offspring. The standardized variance in actual male reproductive success (i.e., the total number of within-pair and extra-pair offspring sired) was more than seven times higher than the variation in apparent success (i.e., success assuming that no extra-pair mating occurred). Success at siring within-pair and extra-pair offspring both contributed to the variation in overall male reproductive success. Within-pair success, however, did not predict a male's level of extra-pair success, suggesting that males do not sacrifice within-pair paternity to gain extra-pair paternity. Calculation of the sexual selection (Bateman) gradient showed that males sire approximately two additional offspring for each extra-pair mate that we identified. Thus, in this sexually dichromatic species, extra-pair mating increases the variance in male reproductive success and provides the potential for sexual selection to act.  相似文献   

13.
Frequency-dependent sexual selection   总被引:1,自引:0,他引:1  
Sexual selection by female choice is expected to give rise to a frequency-dependent sexual advantage in favour of preferred male phenotypes: the rarer the preferred phenotypes, the more often they are chosen as mates. This 'rare-male advantage' can maintain a polymorphism when two or more phenotypes are mated preferentially: each phenotype gains an advantage when it is rarer than the others; no preferred phenotype can then be lost from the population. Expression of preference may be complete or partial. In models of complete preference, females with a preference always mate preferentially. Models of partial preference are more realistic: in these models, the probability that a female mates preferentially depends on the frequency with which she encounters the males she prefers. Two different 'encounter models' of partial preference have been derived: the O'Donald model and the Charlesworth model. The encounter models contain the complete preference model as a limiting case. In this paper, the Charlesworth model is generalized to allow for female preference of more than one male phenotype. Levels of frequency dependence can then be compared in the O'Donald and Charlesworth models. The complete preference model and both encounter models are formulated in the same genetical terms of preferences for dominant and recessive male phenotypes. Polymorphic equilibria and conditions for stability are derived for each of the three models. The models are then fitted to data of frequencies of matings observed in experiments with the two-spot ladybird. The complete preference model gives as good a fit as the encounter models to the data of these and other experiments. The O'Donald and Charlesworth encounter models are shown to produce a very similar frequency-dependent relation. Generally, as females become less choosy, they express their preference with more dependence on male frequency, whereas the resulting selection of the males becomes less frequency dependent. More choosy females are more constant in expressing their preference, producing greater frequency dependence in the selection of the males.  相似文献   

14.
The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes.  相似文献   

15.
16.
17.
The magnitude of the effect of good genes as a viability benefit accruing to choosy females remains a controversial theoretical and empirical issue. We collected all available data from the literature to estimate the magnitude of good-genes viability effects, while adjusting for sample size. The average correlation coefficient between male traits and offspring survival in 22 studies was 0.122, which differed highly significantly from zero. This implies that male characters chosen by females reveal on average 1.5% of the variance in viability. The studies demonstrated considerable heterogeneity in effect size; some of this heterogeneity could be accounted for by differences among taxa (birds demonstrating stronger effects), and by differences in the degree of mating skew in the species (high skew reflecting stronger effects). Although these results suggest that viability-based sexual selection is widespread across taxa, they indicate that the effect is relatively minor. Finally, there was also an effect of publication year in that the more recent studies reported reduced effects. This may reflect publication biases during paradigm shifts of this debated issue, but it should also be recalled that the studies have only partly estimated the full fitness consequences of mate choice for offspring.  相似文献   

18.
Sexual and asexual lines of the unicellular chlorophyte Chlamydomonas reinhardtii were propagated for about 100 sexual cycles and 1000 vegetative cycles in contrasted environments, liquid and solid growth media, in order to generate divergent natural and sexual selection. Sexual lines were transferred by many zygotes or by a single zygote in each sexual generation. By the end of the experiment zygote production was in the order sexual mass-transfer>sexual single-zygote>asexual>ancestor. The direct response to sexual selection was large, with zygote production increasing by about two orders of magnitude, mainly because mating had become spontaneous instead of being invoked by nitrogen starvation. Asexual lines became sexually sterilized by the fixation of a single mating type. Sexual selection caused a radical shift in the gender system, with homothallism spreading to high frequency in all sexual lines of this normally heterothallic species. This may have been caused by the transposition of a mating-type gene to an autosome. No substantial degree of environment-specific mating evolved, however, and thus no sexual isolation indicative of incipient speciation. It is possible that selection experiments of this kind are unlikely to induce sexual isolation because mating-type genes evolve in a saltatory fashion.  相似文献   

19.
The following paper develops a sexual selection model for the evolution of bipedal locomotion, canine reduction, brain enlargement, language and higher intelligence. The model involves an expansion of Darwin’s ideas about human evolution based on recent elaborations of sexual selection theory. Modern notions about intrasexual competition and female and male choice and their ecological correlates are summarized along with a new model for the role of sexual selection in speciation. Rapid evolution of bipedal locomotion as a male adaptation for nuptial feeding of females is proposed as a model for ape-hominid divergence through sexual selection; canine reduction is attributed to selection for associated epigamic displays. The analogy with male specialization through sexual selection speciation in hamadryas baboons is noted. Subsequent changes in female reproductive physiology are attributed to female competition for increased male parental investment during the time of early Homo andHomo erectus. The origin of higher intellectual and language abilities inHomo sapiens is attributed to male competition through technology and rule production to control resources and females; intellectual abilities involved in social manipulation are attributed to female competition for male parental investment and maintenance of polyandry. The course of hominid evolution is characterized as involving a trend from a promiscuous mating system toward increasing intensity of adaptations for male control of females, and by increasing intensity of female adaptation to maintain male parental investment while circumventing male control.  相似文献   

20.
Summary An animal mating system characterized by male-male competition and active searching for sexually receptive females was modelled to study how varying sex ratio and spatiotemporal distribution of receptive females can affect the variance in male mating success (i. e. potential for sexual selection) in males. The temporal distribution of female receptivity periods appeared to be the variable that had the most pronounced effect on the potential for sexual selection in males. The potential for sexual selection increased monotonically as the degree of asynchrony of female reproduction increased. Female spatial distribution and sex ratio were important only when female reproduction was asynchronous. Then, the potential for sexual selection in males was at its peak when females were overdispersed in space and the sex ratio was female biased. Some of the results derived from the model analysis contrast with predictions from previous studies. The deviating results are most likely caused by different assumptions about modes of mate acquisition in males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号