首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鸡PPARγ基因的表达特性及其对脂肪细胞增殖分化的影响   总被引:1,自引:0,他引:1  
为分析鸡PPARγ基因的组织表达特性及其在脂肪细胞增殖和分化过程中的功能,文章以东北农业大学高、低腹脂双向选择品系肉鸡为实验材料,利用Western blotting方法,检测PPARγ基因的组织表达特性及其在高、低脂系肉鸡腹部脂肪组织间的表达差异;采用RNAi技术,在鸡原代脂肪细胞中抑制PPARγ基因的表达后,通过MTT和油红O提取比色的方法,研究鸡PPARγ基因对脂肪细胞增殖和分化的调控作用;利用Real-timePCR和Western blotting技术,分析PPARγ基因表达下调后,其他脂肪细胞分化转录因子以及与脂肪细胞分化相关的重要基因的表达变化情况。结果表明,PPARγ基因在7周龄高脂系肉鸡腹部脂肪组织、肌胃、脾脏、肾脏组织中表达量较高,在心脏中表达量较低,在肝脏、胸肌、腿肌、十二指肠中未检测到表达信号;与高脂系相比,PPARγ基因在5和7周龄低脂系肉鸡腹部脂肪组织中的表达量较低(P<0.05);PPARγ基因的表达量下降后,鸡脂肪细胞的增殖能力增强,分化能力减弱;同时,C/EBPα、SREBP1、A-FABP、Perilipin1、LPL、IGFBP-2基因的表达量均下降(P<0.05)。由此可见,PPARγ基因的表达可能与肉鸡腹部脂肪的沉积有一定的关系,该基因可能是调控鸡脂肪细胞增殖与分化的关键因子。  相似文献   

2.
3.
4.
5.
6.
7.
Sirt1, a NAD+-dependent histone deacetylase, may regulate senescence, metabolism, and apoptosis. In this study, primary pig preadipocytes were cultured in DMEM/F12 medium containing 10% fetal bovine serum (FBS) with or without reagents affecting Sirt1 activity. The adipocyte differentiation process was visualized by light microscopy after Oil red O staining. Proliferation and differentiation of preadipocytes was measured using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and Oil red O extraction. Expression of Sirt1, FoxO1, and adipocyte specific genes was detected with semi-quantitive RT-PCR. The results showed that Sirt1 mRNA was widely expressed in various pig tissues from different developmental stages. Sirt1 mRNA was expressed throughout the entire differentiation process of pig preadipocytes. Resveratrol significantly increased Sirt1 mRNA expression, but decreased the expression of FoxO1 and adipocyte marker gene PPARγ2. Resveratrol significantly inhibited pig preadipocyte proliferation and differentiation. Nicotinamide decreased the expression of Sirt1 mRNA, but increased the expression of FoxO1 and adipocyte specific genes. Nicotinamide greatly stimulated the proliferation and differentiation of pig preadipocytes. In conclusion, these results indicate that Sirt1 may modulate the proliferation and differentiation of pig preadipocytes. Sirt1 may down-regulate pig preadipocytes proliferation and differentiation through repression of adipocyte genes or FoxO1.  相似文献   

8.
9.
Preadipocytes are present in adipose tissues throughout adult life that can proliferate and differentiate into mature adipocytes in response to environmental cues. Abnormal increase in adipocyte number or size leads to fat tissue expansion. However, it is now recognized that adipocyte hypertrophy is a greater risk factor for metabolic syndrome whereas fat tissue that continues to produce newer and smaller fat cells through preadipocyte differentiation is "metabolically healthy". Because adipocyte hypertrophy is often associated with increased oxidant stress and low grade inflammation, both are linked to disturbed cellular redox, we tested how preadipocyte differentiation may be regulated by beta-mercaptoethanol (BME), a pharmacological redox regulator and radical scavenger, using murine 3T3-F442A preadipocytes as the cell model. Effects of BME on adipogenesis were measured by microphotography, real-time PCR, and Western analysis. Our data demonstrated that preadipocyte differentiation could be regulated by extracellular BME. At an optimal concentration, BME enhanced expression of adipogenic gene markers and lipid accumulation. This effect was associated with BME-mediated down-regulation of inflammatory cytokine expression during early differentiation. BME also attenuated TNFalpha-induced activation of NFkappaB in differentiating preadipocytes and partially restored TNFalpha-mediated suppression on adipogenesis. Using a non-adipogenic HEK293 cell line transfected with luciferase reporter genes, we demonstrated that BME reduced basal and TNFalpha-induced NFkappaB activity and increased basal and ciglitazone-induced PPARgamma activity; both may contribute to the pro-adipogenic effect of BME in differentiating F442A preadipocytes.  相似文献   

10.
11.
12.
In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a ≥10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RT-PCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPARγ2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.  相似文献   

13.
Morbid obesity is the result of massive expansion of white adipose tissue (WAT) and requires recruitment of adipocyte precursor cells and their supporting infrastructure. To characterize the change in the expression profile of the preexisting WAT at the start of obesity, when adipocyte hypertrophy is present but hyperplasia is still minimal, we employed a cDNA subtraction screen for genes differentially expressed in epididymal fat pads harvested 1 wk after the start of a 60% fat diet. Ninety-six genes were upregulated by at least 50% above the WAT of control rats receiving a 4% fat diet. Of these genes, 30 had not previously been identified. Sixteen of the 96 genes, including leptin, adipocyte complement-related protein 30 kDa, and resistin, were predicted to encode a signal peptide. Ten of the 16 had been previously identified in other tissues and implicated in cell growth, proliferation, differentiation, cell cycle control, and angiogenesis. One was a novel gene. Twenty-nine novel fragments were identified. Thus, at the onset of high-fat-diet-induced obesity in rats, adipose tissue increases its expression of factors previously implicated in the expansion of nonadipocyte tissues and of several uncharacterized novel factors. The only one of these thus far characterized functionally was found to promote lipogenesis.  相似文献   

14.
15.
16.
17.
Until now, the various proteins highly expressed in adipose tissues have been identified and characterized by traditional gene cloning techniques. However, methods of computer analysis have been developed to compare the levels of expression among various tissues, and genes whose expression levels differ significantly between tissues have been found. Among these genes, we report on the possible function of a new adipose-specific gene, showed higher expression in adipose tissue through ‘Search Expression’ on Genome Institute of Norvartis Research Foundation (GNF) SymAtlas v0.8.0. This database has generated and analyzed gene expression of each gene in diverse samples of normal tissues, organs, and cell lines. This newly discovered gene product was named adipogenin because of its role in stimulating adipocyte differentiation and development. Adipogenin mRNA was highly expressed in four different fat depots, and exclusively expressed in adipocytes isolated from adipose tissues. The level of adipogenin mRNA was up-regulated in the subcutaneous and visceral adipose tissues of mice fed a high-fat diet compared to those on the control diet. The expression of adipogenin mRNA is dramatically elevated during adipocyte differentiation of 3T3-L1 cells. Troglitazone, which up-regulated peroxisome proliferators-activated receptor γ2 (PPAR-γ2) expression, increased adipogenin mRNA expression, although this gene was down-regulated by retinoic acid. Confocal image analyses of green-fluorescent protein-adipogenin (pEGFP-adipogenin) transiently expressed in 3T3-L1 adipocytes showed that adipogenin was strictly localized to membranes and was absent from the cytosol. Moreover, small interfering RNA (siRNA) mediated a reduction of adipogenin mRNA in 3T3-L1 cells and blocked the process of adipocyte differentiation. These results indicate that adipogenin, an adipocyte-specific membrane protein, may be involved with adipogenesis, as one of the regulators of adipose tissue development.Yeon-Hee Hong and Daisuke Hishikawa contributed equally to this work  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号