首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urinary flow is not constant but in fact highly variable, altering the mechanical forces (shear stress, stretch, and pressure) exerted on the epithelial cells of the nephron as well as solute delivery. Nitric oxide (NO) and superoxide (O(2)(-)) play important roles in various processes within the kidney. Reductions in NO and increases in O(2)(-) lead to abnormal NaCl and water absorption and hypertension. In the last few years, luminal flow has been shown to be a regulator of NO and O(2)(-) production along the nephron. Increases in luminal flow enhance fluid, Na, and bicarbonate transport in the proximal tubule. However, we know of no reports directly addressing flow regulation of NO and O(2)(-) in this segment. In the thick ascending limb, flow-stimulated NO and O(2)(-) formation has been extensively studied. Luminal flow stimulates NO production by nitric oxide synthase type 3 and its translocation to the apical membrane in medullary thick ascending limbs. These effects are mediated by flow-induced shear stress. In contrast, flow-induced stretch and NaCl delivery stimulate O(2)(-) production by NADPH oxidase in this segment. The interaction between flow-induced NO and O(2)(-) is complex and involves more than one simply scavenging the other. Flow-induced NO prevents flow from increasing O(2)(-) production via cGMP-dependent protein kinase in thick ascending limbs. In macula densa cells, shear stress increases NO production and this requires that the primary cilia be intact. The role of luminal flow in NO and O(2)(-) production in the distal tubule is not known. In cultured inner medullary collecting duct cells, shear stress enhances nitrite accumulation, a measure of NO production. Although much progress has been made on this subject in the last few years, there are still many unanswered questions.  相似文献   

2.
Extracellular nucleotides regulate epithelial transport via luminal and basolateral P2 receptors. Renal epithelia express multiple P2 receptors, which mediate significant inhibition of solute absorption. Recently, we identified several P2 receptors in the medullary thick ascending limb (mTAL) including luminal and basolateral P2Y(2) receptors (Jensen ME, Odgaard E, Christensen MH, Praetorius HA, Leipziger J. J Am Soc Nephrol 18: 2062-2070, 2007). In addition, we found evidence for a basolateral P2X receptor. Here, we investigate the effect of basolateral ATP on NaCl absorption in isolated, perfused mouse mTALs using the electrical measurement of equivalent short-circuit current (I'(sc)). Nonstimulated mTALs transported at a rate of 1,197 ± 104 μA/cm(2) (n = 10), which was completely blockable with luminal furosemide (100 μM). Basolateral ATP (100 μM) acutely (1 min) and reversibly reduced the absorptive I'(sc). After 2 min, the reduction amounted to 24.4 ± 4.0% (n = 10). The nonselective P2 receptor antagonist suramin blocked the effect. P2Y receptors were found not to be involved in this effect. The P2X receptor agonist 2-methylthio ATP mimicked the ATP effect, and the P2X receptor antagonist periodate-oxidized ATP blocked it. In P2X(7)(-/-) mice, the ATP effect remained unaltered. In contrast, in P2X(4)(-/-) mice the ATP-induced inhibition of transport was reduced. A comprehensive molecular search identified P2X(4), P2X(5), and P2X(1) receptor subunit mRNA in isolated mouse mTALs. These data define that basolateral ATP exerts a significant inhibition of Na(+) absorption in mouse mTAL. Pharmacological, molecular, and knockout mouse data identify a role for the P2X(4) receptor. We suggest that other P2X subunits like P2X(5) are part of the P2X receptor complex. These data provide the novel perspective that an ionotropic receptor and thus a nonselective cation channel causes transport inhibition in an intact renal epithelium.  相似文献   

3.
We studied mesenteric arterial arcades from 3- and 35-day-old swine to determine the relationship between perfusate flow rate and release of nitric oxide (NO) into mesenteric effluent. Mesenteric arterial arcades were perfused under controlled-flow conditions with a peristaltic pump using warm oxygenated Krebs buffer. Basal rates of NO production were 43.6 +/- 4.2 vs. 12.1 +/- 2.5 nmol/min in 3- vs. 35-day-old mesentery during perfusion at in vivo flow rates (9 vs. 20 ml/min, respectively). Rate of NO production was directly related to flow rate over a wide range of flows (5-40 ml/min) in 3- but not 35-day-old mesentery. Both age groups demonstrated a brisk, albeit brief, increase in NO production in response to infusion of NO-dependent vasodilator substance P (10(-8) M/min). Tyrosine kinase inhibitor herbimycin A and L-arginine analog L-NMMA significantly attenuated flow-induced increase in NO production, and phosphatase inhibitor phenylarsine oxide increased magnitude of flow-induced increase in NO production in 3-day-olds. Removal of extracellular Ca(2+) and depletion of intracellular Ca(2+) stores (Ca(2+)-free Krebs with EGTA plus thapsigargin) had no effect on NO production in either group. Thus, basal rate of NO production is greater in mesenteric arterial arcades from 3- than from 35-day old swine, a direct relationship between flow rate and NO production rate is present in mesentery from 3- but not 35-day-olds, and phosphorylation events are necessary for this interaction to occur.  相似文献   

4.
In this study, the generation, convection, diffusion, and consumption of nitric oxide (NO) in and around a single renal medullary descending or ascending vas rectum in rat were modeled using CFD. The vascular lumen (with a core RBC-rich layer and a parietal layer), the endothelium, the pericytes and the interstitium were represented as concentric cylinders. We accounted for the generation of NO by vascular endothelial cells, and that by the epithelial cells of medullary thick ascending limbs (mTALs) and inner medullary collecting ducts (IMCDs), the latter via interstitial boundary conditions. Luminal velocity profiles were obtained by modeling blood flow dynamics. Our results suggest that convection (i.e., blood flow per se) does not significantly affect NO concentrations along the cortico–medullary axis, because the latter are mostly determined by the rate of NO production and that of NO consumption by hemoglobin. However, the shear stress-mediated effects of blood flow on NO generation rates, and therefore NO concentrations, were predicted to be important. Finally, we found that unless epithelial NO generation rates (per unit tubular surface area) are at least 10 times lower than endothelium NO generation rates, NO production by mTALs and IMCDs affects vascular NO concentrations, with possible consequences for medullary blood flow distribution.  相似文献   

5.
The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent deacetylase sirtuin1 (SIRT1) activities, all of which could activate NO production. We hypothesized that resveratrol stimulates NO production by thick ascending limbs via a Ca2+/calmodulin-dependent mechanism. To test this, the effect of resveratrol on NO bioavailability was measured in thick ascending limb suspensions. Cai was measured in single perfused thick ascending limbs. SIRT1 activity and expression were measured in thick ascending limb lysates. Resveratrol (100 µM) increased NO bioavailability in thick ascending limb suspensions by 1.3±0.2 AFU/mg/min (p<0.03). The NOS inhibitor L-NAME blunted resveratrol-stimulated NO bioavailability by 96±11% (p<0.03). The superoxide scavenger tempol had no effect. Resveratrol elevated Cai from 48±7 to 135±24 nM (p<0.01) in single tubules. In Ca2+-free media, the resveratrol-induced increase in NO was blunted by 60±20% (p<0.05) and the rise in Cai reduced by 80%. Calmodulin inhibition prevented the resveratrol-induced increase in NO (p<0.002). AMPK inhibition had no effect. Resveratrol did not increase SIRT1 activity. We conclude that resveratrol increases NO production in thick ascending limbs via a Ca2+/calmodulin dependent mechanism, and SIRT1 and AMPK do not participate. Resveratrol-stimulated NO production in thick ascending limbs may account for part of its beneficial effects.  相似文献   

6.
Superoxide (O2-) increases Na+ reabsorption in the thick ascending limb (THAL) by enhancing Na/K/2Cl cotransport. However, the effects of O2- on other THAL transporters, such as Na(+)/H+ exchangers, are unknown. We hypothesized that O2- stimulates Na(+)/H+ exchange in the THAL. We assessed total Na(+)/H+ exchange activity by measuring recovery of intracellular pH (pH(i)) after acid loading in isolated perfused THALs before and after adding xanthine oxidase (XO) and hypoxanthine (HX). We found that XO and HX decreased total pH(i) recovery rate from 0.26 +/- 0.05 to 0.21 +/- 0.04 pH units/min (P < 0.05), and this net inhibition decreased steady-state pH(i) from 7.52 to 7.37. Because THALs have different Na(+)/H+ exchanger isoforms on the luminal and basolateral membrane, we tested the effects of xanthine oxidase and hypoxanthine on luminal and basolateral Na(+)/H+ exchange by adding dimethylamiloride to either the bath or lumen. Xanthine oxidase and hypoxanthine increased luminal Na(+)/H+ exchange from 3.5 +/- 0.8 to 6.7 +/- 1.4 pmol.min(-1).mm(-1) (P < 0.01) but decreased basolateral Na(+)/H+ exchange from 10.8 +/- 1.8 to 6.8 +/- 1.1 pmol.min(-1).mm(-1) (P < 0.007). To ascertain whether these effects were caused by O2- or H2O2, we examined the ability of tempol, a superoxide dismutase mimetic, to block these effects. In the presence of tempol, xanthine oxidase and hypoxanthine had no effect on luminal or basolateral Na(+)/H+ exchange. We conclude that O2- inhibits basolateral and stimulates luminal Na(+)/H+ exchangers, perhaps because different isoforms are expressed on each membrane. Inhibition of basolateral Na(+)/H+ exchange may enhance stimulation of luminal Na(+)/H+ exchange by providing additional protons to be extruded across the luminal membrane. Together, the effects of O2- on Na(+)/H+ exchange may increase net HCO3- reabsorption by the THAL.  相似文献   

7.
Tubuloglomerular feedback (TGF), the change of afferent arteriolar resistance initiated by changes of luminal NaCl concentration, is thought to be related to NaCl-dependent release of ATP by macula densa cells. In the present study, we have explored the possibility that the released ATP may directly interact with vasoconstrictor P2 purinergic receptors in the vicinity of the glomerular vascular pole. In two different strains of wild-type mice (SWR/J and FVB), TGF responses were determined in vivo by measuring the stop flow pressure (P(SF)) change caused by a saturating increase in loop of Henle flow rate before and during the administration of the P2 receptor inhibitors PPADS (12 mg/kg + 35 mg·kg(-1)·h(-1) iv) or suramin (50 mg/kg + 150 mg·kg(-1)·h(-1)). Both agents significantly reduced the blood pressure response to the P2X agonist α,β-methylene ATP. In SWR/J and FVB mice, elevating flow to 30 nl/min reduced P(SF) by 16.4 ± 2.2 and 17.1 ± 1.8%. During infusion of PPADS, P(SF) fell by 18.8 ± 2 (P = 0.4) and 16.5 ± 1.5% (P = 0.82) in the two strains of mice. During suramin infusion, P(SF) decreased by 14.7 ± 2.4 (P = 0.62) and 15 ± 1.3% (P = 0.4) in SWR/J and FVB mice, respectively. Including PPADS (10(-4) M) in the loop perfusate did not significantly alter the P(SF) response (18.9 ± 1.8%; P = 0.54). Arterial blood pressure was not systematically affected by the P2 inhibitors. As measured by free-flow micropuncture, PPADS significantly reduced proximal tubular fluid reabsorption in both fractional and absolute terms. These results indicate that the direct activation of P2 purinergic receptors by ATP is not a major cause of TGF-induced vasoconstriction in vivo.  相似文献   

8.
Production and absorption of nitric oxide gas in the nose   总被引:3,自引:0,他引:3  
Some nitric oxide gas (NO) produced in thesinuses and nasal cavity is absorbed before leaving the nose. Tomeasure production and absorption, we introduced NO at differentconcentrations into one nostril while sampling the NO leaving theopposite nostril with the soft palate closed. The quantity of NO gasproduced in six normal subjects (amount leaving plus the amountabsorbed) averaged 352 nl/min and was the same at gas flows rangingfrom 8 to 347 ml/min and at 10 l/min. An absorption coefficientA was calculated by dividing theamount of NO absorbed by the concentration leaving the nose.A ranged from 17 ml/min at a nasal gasflow of 8 ml/min to an A of 24 ml/minat a nasal gas flow of 347 ml/min. The calculated rates of productionand absorption did not change when gas flow rate was increased,suggesting diffusion equilibrium. The amount of uptake of NO in thenasal mucosa can be explained by its solubility coupled with tissue andblood reactivity.

  相似文献   

9.
The effects of changing perfusate flow on lung nitric oxide (NO) production and pulmonary arterial pressure (Ppa) were tested during normoxia and hypoxia and after N(G)-monomethyl-L-arginine (L-NMMA) treatment during normoxia in both blood- and buffer-perfused rabbit lungs. Exhaled NO (eNO) was unaltered by changing perfusate flow in blood-perfused lungs. In buffer-perfused lungs, bolus injections of ACh into the pulmonary artery evoked a transient increase in eNO from 67 +/- 3 (SE) to 83 +/- 7 parts/billion with decrease in Ppa, whereas perfusate NO metabolites (pNOx) remained unchanged. Stepwise increments in flow from 25 to 150 ml/min caused corresponding stepwise elevations in eNO production (46 +/- 2 to 73 +/- 3 nl/min) without changes in pNOx during normoxia. Despite a reduction in the baseline level of eNO, flow-dependent increases in eNO were still observed during hypoxia. L-NMMA caused declines in both eNO and pNOx with a rise in Ppa. Pulmonary vascular conductance progressively increased with increasing flow during normoxia and hypoxia. However, L-NMMA blocked the flow-dependent increase in conductance over the range of 50-150 ml/min of flow. In the more physiological conditions of blood perfusion, eNO does not reflect endothelial NO production. However, from the buffer perfusion study, we suggest that endothelial NO production secondary to increasing flow, may contribute to capillary recruitment and/or shear stress-induced vasodilation.  相似文献   

10.
This study investigates the presence and properties of Na+-activated K+ (K(Na)) channels in epithelial renal cells. Using real-time PCR on mouse microdissected nephron segments, we show that Slo2.2 mRNA, which encodes for the K(Na) channels of excitable cells, is expressed in the medullary and cortical thick ascending limbs of Henle's loop, but not in the other parts of the nephron. Patch-clamp analysis revealed the presence of a high conductance K+ channel in the basolateral membrane of both the medullary and cortical thick ascending limbs. This channel was highly K+ selective (P(K)/P(Na) approximately 20), its conductance ranged from 140 to 180 pS with subconductance levels, and its current/voltage relationship displayed intermediate, Na+-dependent, inward rectification. Internal Na+ and Cl- activated the channel with 50% effective concentrations (EC50) and Hill coefficients (nH) of 30 +/- 1 mM and 3.9 +/- 0.5 for internal Na+, and 35 +/- 10 mM and 1.3 +/- 0.25 for internal Cl-. Channel activity was unaltered by internal ATP (2 mM) and by internal pH, but clearly decreased when internal free Ca2+ concentration increased. This is the first demonstration of the presence in the epithelial cell membrane of a functional, Na+-activated, large-conductance K+ channel that closely resembles native K(Na) channels of excitable cells. This Slo2.2 type, Na+- and Cl--activated K+ channel is primarily located in the thick ascending limb, a major renal site of transcellular NaCl reabsorption.  相似文献   

11.
Dietary sodium and blood pressure regulation differs between normotensive men and women, an effect which may involve endothelial production of nitric oxide (NO). Therefore, we tested the hypothesis that differences in the NO component of endothelium-dependent vasodilation between low and high dietary sodium intake depend on sex. For 5 days prior to study, healthy adults consumed a controlled low-sodium diet (10 mmol/day, n = 30, mean age ± SE: 30 ± 1 yr, 16 men) or high-sodium diet (400 mmol/day, n = 36, age 23 ± 1 yr, 13 men). Forearm blood flow (FBF, plethysmography) responses to brachial artery administration of acetylcholine (ACh, 4 μg·100 ml tissue(-1)·min(-1)) were measured before and after endothelial NO synthase inhibition with N(G)-monomethyl-l-arginine (l-NMMA, 50 mg bolus + 1 mg/min infusion). The NO component of endothelium-dependent dilation was calculated as the response to ACh before and after l-NMMA accounting for changes in baseline FBF: [(FBF ACh - FBF baseline) - (FBF ACh(L-NMMA) - FBF baseline(L-NMMA))]. This value was 5.7 ± 1.3 and 2.5 ± 0.8 ml·100 ml forearm tissue(-1)·min(-1) for the low- and high-sodium diets, respectively (main effect of sodium, P = 0.019). The sodium effect was larger for the men, with values of 7.9 ± 2.0 and 2.2 ± 1.4 for men vs. 3.1 ± 1.3 and 2.7 ± 1.0 ml·100 ml forearm tissue(-1)·min(-1) for the women (P = 0.034, sex-by-sodium interaction). We conclude that the NO component of endothelium-dependent vasodilation is altered by dietary sodium intake based on sex, suggesting that endothelial NO production is sensitive to dietary sodium in healthy young men but not women.  相似文献   

12.
The tubuloglomerular feedback mechanism (TGF) plays an important role in regulating single-nephron glomerular filtration rate (GFR) by coupling distal tubular flow to arteriolar tone. It is not known whether TGF is active in the developing kidney or whether it can regulate renal vascular tone and thus GFR during intrauterine life. TGF characteristics were examined in late-gestation ovine fetuses and lambs under normovolemic and volume-expanded (VE) conditions. Lambs and pregnant ewes were anesthetized and the fetuses were delivered via a caesarean incision into a heated water bath, with the umbilical cord intact. Under normovolemic conditions, mean arterial pressure of the fetuses was lower than lambs (51 ± 1 vs. 64 ± 3 mmHg). The maximum TGF response (ΔP(SFmax)) was found to be lower in fetuses than lambs when tubular perfusion was increased from 0 to 40 nl/min (5.4 ± 0.7 vs. 10.6 ± 0.4 mmHg). Furthermore, the flow rate eliciting half-maximal response [turning point (TP)] was 15.7 ± 0.9 nl/min in fetuses compared with 19.3 ± 1.0 nl/min in lambs, indicating a greater TGF sensitivity of the prenatal kidney. VE decreased ΔP(SFmax) (4.2 ± 0.4 mmHg) and increased TP to 23.7 ± 1.3 nl/min in lambs. In fetuses, VE increased stop-flow pressure from 26.6 ± 1.5 to 30.3 ± 0.8 mmHg, and reset TGF sensitivity so that TP increased to 21.3 ± 0.7 nl/min, but it had no effect on ΔP(SFmax). This study provides direct evidence that the TGF mechanism is active during fetal life and responds to physiological stimuli. Moreover, reductions in TGF sensitivity may contribute to the increase in GFR at birth.  相似文献   

13.
The transport of glucose by canine thick ascending limbs (TAL) and inner medullary collecting ducts (IMCD) was studied using tubule suspensions and membrane vesicles. The uptake of D-[14C(U)]glucose by a suspension of intact TAL tubules was reduced largely by phloretin (Pt), moderately by phlorizin (Pz), and completely suppressed by a combination of both agents. A selective effect of Pz on the transport of [14C]alpha-methyl-D-glucoside, but not on 2-[3H]deoxyglucose, was also observed in TAL tubules. In contrast, glucose transport was unaffected by Pz but entirely suppressed by Pt alone in IMCD tubules. The metabolism of glucose was largely suppressed by Pt but unaffected by Pz in both types of tubules. Membrane vesicles were prepared from the red medulla and the white papilla or from TAL and IMCD tubules isolated from these tissues. Vesicle preparations from both tissues demonstrated a predominant carrier-mediated, sodium-independent, Pt- and cytochalasin B-sensitive glucose transport. Following purification of basolateral membrane on a Percoll gradient, the sodium-insensitive D-[14C(U)]glucose transport activity copurified with the activity of the basolateral marker Na(+)-K+ ATPase in both tissues. However, a small sodium-dependent and Pz-sensitive component of glucose transport was found in membrane vesicles prepared from the red medulla or from thick ascending limb tubules but not from the papilla nor collecting duct tubules. The kinetic analysis of the major sodium-independent processes showed that the affinity of the transporter for glucose was greater in collecting ducts (Km = 2.3 mM) than in thick ascending limbs (Km = 4.9 mM). We conclude that glucose gains access into the cells largely through a basolateral facilitated diffusion process in both segments. However a small sodium-glucose cotransport is also detected in membranes of TAL tubules. The transport of glucose presents an axial differentiation in the affinity of glucose transporters in the renal medulla, ensuring an adequate supply of glucose to the glycolytic inner medullary structures.  相似文献   

14.
Due to its unique location, the endothelial surface glycocalyx (ESG) at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO) production in post-capillary venules and arterioles of rat mesentery under reduced (low) and normal (high) flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS) of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA). Rats (SD, 250–300g) were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s) and for ~60 min under a high flow (~1000 μm/s). In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.  相似文献   

15.
16.
Nasal nitric oxide (NO) exchange dynamics are poorly understood but potentially are of importance, inasmuch as they may provide insight into the NO-related physiology of the bronchial tree. In healthy human volunteers, NO output was assessed by isolating the nasal cavity through elevation of the soft palate and application of tight-fitting nasal olives. Mean NO output was 334 nl/min and was a positive function of gas flow. With the use of a mathematical model and the introduction of nonzero concentrations of NO, the diffusing capacity for NO in the nose (DNO) and the mucosal NO concentration (Cw) were determined. DNO ranged from 0.52 to 2.98 x 10(-3) nl x s(-1) x ppb(-1) and Cw from 1,236 to 8,947 ppb. Cw declined with increasing gas flow, while DNO was constant. NO output declined with luminal hypoxia, particularly at oxygen tensions <10%. Measurement of nasal DNO and Cw is easy using this method, and the range of intersubject values of Cw raises the possibility of interindividual differences in NO-dependent nasal physiology.  相似文献   

17.
The response of confluent monolayers of HT29-Cl.16E cells to stimulation by extracellular ATP and ATP analogues was investigated in terms of mucin and electrolyte secretion. Mucin secretion was measured as release of glucosamine-labeled macromolecules trapped at the stacking/running gel interface of polyacrylamide gels and electrolyte secretion as shortcircuit current (Isc). Luminal ATP stimulated a transient increase in the release of mucins and of I sc corresponding to a secretory Cl current. Both secretions peaked at 3 to 5 min after addition of ATP. Maximal ATP-stimulated mucin secretion over 15 min was up to 18-fold above control with an apparent ED50 of approximately 40 m. Maximal peak I sc after stimulation with ATP was approximately 35 A/cm2 with an apparent ED50 of about 0.4 mm. ATP-dependent I sc was at least in part due to Cl secretion since removal of Cl from the medium reduced the peak I sc by 40% and the I sc integrated over 40 min by 80%. The secretory responses were not associated with cell damage as assessed by failure of ethidium bromide to enter into the cells, absence of release of lactate dehydrogenase, maintenance of monolayer conductance, viability, and responses to repeated applications of ATP. The order of efficacy of nucleotide agonists was similar for both processes with ATP>ADP>AMPadenosine. Luminal ATP was much more effective than basolateral addition of this compound. These results suggest involvement of a luminal P2-type receptor which can initiate signaling pathways for granule fusion and mucin release as well as for activation of Cl channels. P2-receptor-stimulated mucin and I sc release was strongly inhibited by a 30 min preincubation with the classical K+ channel blockers quinine (1 mm), quinidine (1 mm), and Ba2+ (3 mm). Experiments with amphotericin B to measure separately the conductance changes of either luminal or basolateral plasma membrane revealed that quinidine did not directly block the ATP-induced basolateral K+ or the luminal anion channels. The quinidine inhibition after preincubation is therefore most easily explained by interference with granule fusion and location of anion channels in granule membranes. Luminal P2 receptors may play a role in intestinal defense mechanisms with both fluid and mucin secretion aiding in the removal of noxious agents from the mucosal surface.Supported by grants from the National Institutes of Health (DK 39658) to U.H., the Philippe Foundation to D.M., the French Cystic Fibrosis Foundation (AFLM) and L'Association Pour La Recherche Sur Le Cancer to C.L. The authors thank Mr. J. Polack for his efforts and skill with electron microscopy and Dr. George Dubyak for helpful discussions. We also acknowledge the Cystic Fibrosis Center Core grant (DK-27651) for its support of electron and light microscopy.  相似文献   

18.
Nitric oxide (NO) is released into nasal air, but its function is unknown. We hypothesized that nasal vascular tone and/or flow influences temperature conditioning of nasal air and that NO participates in this process. We measured nasal air temperature (via a thermocouple) and exhaled nasal NO release (by chemiluminescence) in five humans and examined the effects of an aerosolized vasoconstrictor (oxymetazoline), a vasodilator (papaverine), N(G)-nitro-L-arginine methyl ester, an inhibitor of NO synthase, or saline (control). Compared with saline (which caused no changes in nasal air temperature or exhaled NO release), oxymetazoline (0.05%) reduced nasal air temperature and NO release (130.8 +/- 15.1 to 81.3 +/- 12.8 nl. min(-1). m(-2); P < 0.01). Papaverine (0.01 M) increased nasal air temperature and NO release (131.8 +/- 13.1 to 157.2 +/- 17.4 nl. min(-1). m(-2); P < 0.03). N(G)-nitro-L-arginine methyl ester reduced nasal air temperature and NO release (123.7 +/- 14.2 to 44.2 +/- 23.7 nl. min(-1). m(-2); P < 0.01). The results suggest that vascular tone and/or flow modulates temperature conditioning and that NO may participate in that function.  相似文献   

19.
In gastric mucosal injury, nitric oxide (NO) plays both cytoprotective and cytotoxic roles, and the NO level is one determinant of these dual roles. We employed electron paramagnetic resonance (EPR)-spectrometry combined with an NO-trapping technique to directly evaluate NO production in ethanol-induced gastric injury in rats. The rat stomach, mounted on an ex vivo chamber, was perfused with ethanol (12.5 and 43%), and NO levels in mucosal tissues were measured during perfusion. Luminal nitrite/nitrate (NOx) content, mucosal blood flow, area of mucosal injury, transmucosal potential difference (PD), and luminal pH were simultaneously monitored with/without preadministration of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). NO levels in the gastric tissue increased during ethanol perfusion, and luminal NOx levels increased after the perfusion, accompanying an increase in the area of mucosal injury and changes in physiological parameters. Preadministration of L-NAME aggravated the gastric mucosal damage and suppressed increases in mucosal blood flow in a dose-dependent manner. These results demonstrate that endogenous NO produced in ethanol-induced gastric injury contributes to maintenance of mucosal integrity via regulation of mucosal blood flow.  相似文献   

20.
The renal medullary thick ascending limb (MTAL) actively reabsorbs ammonium ions. To examine the effects of NH4+ transport on intracellular pH (pHi) and the mechanisms of apical membrane NH4+ transport, MTALs from rats were isolated and perfused in vitro with 25 mM HCO3(-)-buffered solutions (pH 7.4). pHi was monitored using the fluorescent dye BCECF. In the absence of NH4+, the mean pHi was 7.16. Luminal addition of 20 mM NH4+ caused a rapid intracellular acidification (dpHi/dt = 11.1 U/min) and reduced the steady state pHi to 6.67 (delta pHi = 0.5 U), indicating that apical NH4+ entry was more rapid than entry of NH3. Luminal furosemide (10(-4) M) reduced the initial rate of cell acidification by 70% and the fall in steady state pHi by 35%. The residual acidification observed with furosemide was inhibited by luminal barium (12 mM), indicating that apical NH4+ entry occurred via both furosemide (Na(+)-NH4(+)-2Cl- cotransport) and barium- sensitive pathways. The role of these pathways in NH4+ absorption was assessed under symmetric ammonium conditions. With 4 mM NH4+ in perfusate and bath, mean steady state pHi was 6.61 and net ammonium absorption was 12 pmol/min/mm. Addition of furosemide to the lumen abolished net ammonium absorption and caused pHi to increase abruptly (dpHi/dt = 0.8 U/min) to 7.0. Increasing luminal [K+] from 4 to 25 mM caused a similar, rapid cell alkalinization. The pronounced cell alkalinization observed with furosemide or increasing [K+] was not observed in the absence of NH4+. In symmetric 4 mM NH4+ solutions, addition of barium to the lumen caused a slow intracellular alkalinization and reduced net ammonium absorption only by 14%. Conclusions: (a) ammonium transport is a critical determinant of pHi in the MTAL, with NH4+ absorption markedly acidifying the cells and maneuvers that inhibit apical NH4+ uptake (furosemide or elevation of luminal [K+]) causing intracellular alkalinization; (b) most or all of transcellular ammonium absorption is mediated by apical membrane Na(+)- NH4(+)-2Cl- cotransport; (c) NH4+ also permeates a barium-sensitive apical membrane transport pathway (presumably apical membrane K+ channels) but this pathway does not contribute significantly to ammonium absorption under physiologic (symmetric ammonium) conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号