首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All biological reactions depend on the diffusion and re-localization of biomolecules. Our understanding of biological processes requires accurate measurement of biomolecule mobility in living cells. Currently, approaches for investigating the mobility of biomolecules are generally restricted to measuring either fast or slow diffusion kinetics. We describe the development and application of a photoconvertible fluorescent protein, Phamret, that can be highlighted by UV light stimulation inducing a change in fluorescence emission from cyan fluorescent protein (CFP) to photoactivated GFP (PA-GFP). Phamret can be monitored by single excitation-dual emission mode for visualization of molecular dynamics for a broad range of kinetics. We also devised a microscopy-based method to measure the diffusion coefficient from the fluorescence decay after photostimulation of Phamret, enabling analysis of diffusion kinetics ranging from less than 0.1 microm2/s up to approximately 100 microm2/s, and found significant changes in free protein movement during cell-cycle progression.  相似文献   

2.
The role of ligand affinity in altering αPS2CβPS integrins’ lateral mobility was studied using single particle tracking (SPT) with ligand-functionalized quantum dots (QDs) and fluorescence recovery after photobleaching (FRAP) with fluorescent protein tagged integrins. Integrins are ubiquitous transmembrane proteins that are vital for numerous cellular functions, including bidirectional signaling and cell anchorage. Wild-type and high ligand affinity mutant (αPS2CβPS-V409D) integrins were studied in S2 cells. As measured by SPT, the integrin mobile fraction decreased by 22 % and had a 4× slower diffusion coefficient for αPS2CβPS-V409D compared to wild-type integrins. These differences are partially the result of αPS2CβPS-V409D integrins’ increased clustering. For the wild-type integrins, the average of all diffusion coefficients measured by SPT was statistically similar to the ensemble FRAP results. A 75 % slower average diffusion coefficient was measured by SPT compared to FRAP for αPS2CβPS-V409D integrins, and this may be the result of SPT measuring only ligand-bound integrins, in contrast all ligand-bound and ligand-unbound integrins are averaged in FRAP measurements. Specific binding of the ligand-functionalized QDs was 99 % for integrin expressing cells. The results prove that the ligand binding affinity affects the lateral dynamics of a subset of integrins based on the complementary SPT and FRAP data.  相似文献   

3.
Vaults are ribonucleoproteins that may function in intracellular transport processes. We investigated the intracellular distribution and dynamics of vaults in non-small cell lung cancer cells in which vaults are labeled with the green fluorescent protein. Immunofluorescence experiments showed that vaults are dispersed throughout the cytoplasm; a small fraction is found in close proximity to microtubules. Immunoprecipitation experiments corroborated these results showing co-precipitation of MVP and beta-tubulin. Using quantitative fluorescence-recovery after photobleaching (FRAP), we demonstrated that vault mobility over longer distances in part depends on intact microtubules; vaults moving slower when microtubules are depolymerized by nocodazole. Biochemical fractionation indicated a small fraction of MVP associated with the nucleus, however, no GFP-tagged vaults could be observed inside the nucleus. We observed an accumulation of vaults at the nuclear envelope upon treatment of cells with the protein synthesis inhibitor cycloheximide. Analysis of nucleo-cytoplasmic transport using a fluorescent substrate containing a classical NLS and NES expressed in MVP+/+ and MVP-/- mouse embryonic fibroblasts indicated no differences in nuclear import/export kinetics, suggesting no role for vaults in these processes. We hypothesize that a subset of vaults moves directionally via microtubules, possibly towards the nucleus.  相似文献   

4.
Transmembrane movement of phosphatidylserine (PS) and various PS analogs at the plasma membrane is thought to occur by an ATP-dependent, protein-mediated process. To isolate mutant CHO cells defective in this activity, we first obtained conditions which inhibited the endocytic, but not the non-endocytic pathway of lipid internalization since PS may enter cells by a combination of these two pathways. We found that acidic treatment of cells, which blocks clathrin-dependent endocytosis, enhanced the energy-dependent uptake of 1-palmitoyl-2-(6-[(7-nitrobenz- 2-oxa-1,3-diazol-4-yl)amino]caproyl -sn- glycero-3-phosphoserine (C6- NBD-PS) in CHO cells from donor vesicles (liposomes) by about twofold. Control experiments demonstrated that the enhanced uptake of C6-NBD-PS at acidic pH was not due to: (a) an increase in the capacity of the plasma membrane to incorporate C6-NBD-PS from the donor vesicles; (b) a decrease in the rate of loss of C6-NBD-PS from the cells; or (c) fusion or engulfment of the donor vesicles. When cytosolic acidification (to pH 6.3) was imposed without acidification of the extracellular medium, C6-NBD-PS uptake by intact cells was increased by about 50% compared to control values determined in the absence of acidification. These results suggested that a protein and energy dependent system(s) for transbilayer movement of the fluorescent PS was stimulated by cytosolic acidification. A screening method for mutant cells defective in the non- endocytic uptake of fluorescent PS analogs with replica cell colonies at acidic pH was then devised. After selection of mutagenized CHO-K1 cells by in situ screening, we obtained a mutant cell line in which uptake of fluorescent PS analogs was reduced to about 25% of the wild type level at either pH 6.0 or 7.4. Control experiments demonstrated that the reduced uptake of fluorescent PS analogs in the mutant cells was unrelated to multidrug resistance, and that endocytosis of another plasma membrane lipid marker occurred normally in the mutant cells. These results suggested that a non-endocytic pathway responsible for uptake of fluorescent PS analogs was specifically affected in the mutant cells.  相似文献   

5.
Pre-mRNA splicing factors are enriched in nuclear domains termed interchromatin granule clusters or nuclear speckles. During mitosis, nuclear speckles are disassembled by metaphase and reassembled in telophase in structures termed mitotic interchromatin granules (MIGs). We analysed the dynamics of the splicing factor SC35 in interphase and mitotic cells. In HeLa cells expressing green fluorescent protein (GFP)-SC35, this was localized in speckles during interphase and dispersed in metaphase. In telophase, GFP-SC35 was highly enriched within telophase nuclei and also detected in MIGs. Fluorescence recovery after photobleaching (FRAP) experiments revealed that the mobility of GFP-SC35 was distinct in different mitotic compartments. Interestingly, the mobility of GFP-SC35 was 3-fold higher in the cytoplasm of metaphase cells compared with interphase speckles, the nucleoplasm or MIGs. Treatment of cells with inhibitors of cyclin-dependent kinases (cdks) caused changes in the organization of nuclear compartments such as nuclear speckles and nucleoli, with corresponding changes in the mobility of GFP-SC35 and GFP-fibrillarin. Our results suggest that the dynamics of SC35 are significantly influenced by the organization of the compartment in which it is localized during the cell cycle.  相似文献   

6.
BACKGROUND INFORMATION: The uneven distribution of the Ins(1,4,5)P3R [Ins(1,4,5)P3 receptor] within the ER (endoplasmic reticulum) membrane generates spatially complex Ca2+ signals. The ER is a dynamic network, which allows the rapid diffusion of membrane proteins from one part of the cell to another. However, little is known about the localization and the dynamics of the Ins(1,4,5)P3R in the ER of living cells. We have used a MDCK (Madin-Darby canine kidney) clone stably expressing the Ins(1,4,5)P3R1-GFP (where GFP stands for green fluorescent protein) to investigate the effect of cell polarity on the lateral mobility of the Ins(1,4,5)P3R. RESULTS: In non-confluent MDCK cells, the chimaera is homogeneously distributed throughout the ER and the nuclear envelope. FRAP (fluorescence recovery after photobleaching) experiments showed that the receptor can move freely in the ER with a diffusion constant (D=0.01 microm2/s) approx. ten times lower than other ER membrane proteins. In confluent polarized cells, two populations of receptor can be defined: one population is distributed in the cytoplasm and is mobile but with a slower diffusion constant (D=0.004 microm2/s) compared with non-confluent cells, whereas the other population is concentrated at the periphery of the cells and is apparently immobile. CONCLUSIONS: The observed differences in the mobility of the Ins(1,4,5)P3R are most probably due to its interactions with stable protein complexes that form at the periphery of the polarized cells.  相似文献   

7.
FGF21 stimulates FGFR1c activity in cells that co-express Klothoβ (KLB); however, relatively little is known about the interaction of these receptors at the plasma membrane. We measured the dynamics and distribution of fluorescent protein-tagged KLB and FGFR1c in living cells using fluorescence recovery after photobleaching and number and brightness analysis. We confirmed that fluorescent protein-tagged KLB translocates to the plasma membrane and is active when co-expressed with FGFR1c. FGF21-induced signaling was enhanced in cells treated with lactose, a competitive inhibitor of the galectin lattice, suggesting that lattice-binding modulates KLB and/or FGFR1c activity. Fluorescence recovery after photobleaching analysis consistently revealed that lactose treatment increased KLB mobility at the plasma membrane, but did not affect the mobility of FGFR1c. The association of endogenous KLB with the galectin lattice was also confirmed by co-immunoprecipitation with galectin-3. KLB mobility increased when co-expressed with FGFR1c, suggesting that the two receptors form a heterocomplex independent of the galectin lattice. Number and brightness analysis revealed that KLB and FGFR1c behave as monomers and dimers at the plasma membrane, respectively. Co-expression resulted in monomeric expression of KLB and FGFR1c consistent with formation of a 1:1 heterocomplex. Subsequent addition of FGF21 induced FGFR1 dimerization without changing KLB aggregate size, suggesting formation of a 1:2 KLB-FGFR1c signaling complex. Overall, these data suggest that KLB and FGFR1 form a 1:1 heterocomplex independent of the galectin lattice that transitions to a 1:2 complex upon the addition of FGF21.  相似文献   

8.
For a large smooth particle with charges at the surface, the electrophoretic mobility is proportional to the zeta potential, which is related to the charge density by the Gouy-Chapman theory of the diffuse double layer. This classical model adequately describes the dependence of the electrophoretic mobility of phospholipid vesicles on charge density and salt concentration, but it is not applicable to most biological cells, for which new theoretical models have been developed. We tested these new models experimentally by measuring the effect of UO2++ on the electrophoretic mobility of model membranes and human erythrocytes in 0.15 M NaCl at pH 5. We used UO2++ for these studies because it should adsorb specifically to the bilayer surface of the erythrocyte and should not change the density of fixed charges in the glycocalyx. Our experiments demonstrate that it forms high-affinity complexes with the phosphate groups of several phospholipids in a bilayer but does not bind significantly to sialic acid residues. As observed previously, UO2++ adsorbs strongly to egg phosphatidylcholine (PC) vesicles: 0.1 mM UO2++ changes the zeta potential of PC vesicles from 0 to +40 mV. It also has a large effect on the electrophoretic mobility of vesicles formed from mixtures of PC and the negative phospholipid phosphatidylserine (PS): 0.1 mM UO2++ changes the zeta potential of PC/PS vesicles (10 mol % PS) from -13 to +37 mV. In contrast, UO2++ has only a small effect on the electrophoretic mobility of either vesicles formed from mixtures of PC and the negative ganglioside GM1 or erythrocytes: 0.1 mM UO2++ changes the apparent zeta potential of PC/GM1 vesicles (17 mol % GM1) from -11 to +5 mV and the apparent zeta potential of erythrocytes from -12 to -4 mV. The new theoretical models suggest why UO2++ has a small effect on PC/GM1 vesicles and erythrocytes. First, large groups (e.g., sugar moieties) protruding from the surface of the PC/GM1 vesicles and erythrocytes exert hydrodynamic drag. Second, charges at the surface of a particle (e.g., adsorbed UO2++) exert a smaller effect on the mobility than charges located some distance from the surface (e.g., sialic acid residues).  相似文献   

9.
Experiments with fluorescence recovery after photobleaching (FRAP) started 30 years ago to visualize the lateral mobility and dynamics of fluorescent proteins in living cells. Its popularity increased when non-invasive fluorescent tagging became possible with the green fluorescent protein (GFP). Many researchers use GFP to study the localization of fusion proteins in fixed or living cells, but the same fluorescent proteins can also be used to study protein mobility in living cells. Here we review the potential of FRAP to study protein dynamics and activity within a single living cell. These measurements can be made with most standard confocal laser-scanning microscopes equipped with photobleaching protocols.  相似文献   

10.
Not much is known about the mobility of synaptic vesicles inside small synapses of the central nervous system, reflecting a lack of methods for visualizing these dynamics. We adapted confocal spot detection with fluctuation analysis to monitor the mobility of fluorescently labeled synaptic vesicles inside individual boutons of cultured hippocampal neurons. Using Monte Carlo simulations we were able to propose a simple quantitative model that can describe vesicle mobility in small hippocampal boutons under resting conditions and different pharmacological treatments. We find that vesicle mobility in a time window of 20 s can be well described by caged diffusion (D approximately 5 x 10(-5) microm(2)/s, cage sizes of approximately 50 nm). Mobility can be upregulated by phosphatase blockage and increased further by actin disruption in a dose-dependent manner. Inhibition of the myosin light chain kinase slows down vesicle mobility 10-fold, whereas other kinases like protein kinase C (PKC), A (PKA), and calmodulin kinase II (caMKII) do not affect mobility in unstimulated boutons.  相似文献   

11.
Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial‐temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light‐driven timer concept that could report relative protein ages at specific sub‐cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light‐driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible “ruler” for studying temporal hierarchy of spatially ordered processes with exquisite spatial‐temporal resolution. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
Single-molecule imaging of l-type Ca(2+) channels in live cells   总被引:3,自引:0,他引:3       下载免费PDF全文
L-type Ca(2+) channels are an important means by which a cell regulates the Ca(2+) influx into the cytosol on electrical stimulation. Their structure and dynamics in the plasma membrane, including their molecular mobility and aggregation, is of key interest for the in-depth understanding of their function. Construction of a fluorescent variant by fusion of the yellow-fluorescent protein to the ion channel and expression in a human cell line allowed us to address its dynamic embedding in the membrane at the level of individual channels in vivo. We report on the observation of individual fluorescence-labeled human cardiac L-type Ca(2+) channels using wide-field fluorescence microscopy in living cells. Our fluorescence and electrophysiological data indicate that L-type Ca(2+) channels tend to form larger aggregates which are mobile in the plasma membrane.  相似文献   

13.
14.
The functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein timers (tFTs), fusions of two single-color fluorescent proteins that mature with different kinetics, which we use to analyze protein turnover and mobility in living cells. We fuse tFTs to proteins in yeast to study the longevity, segregation and inheritance of cellular components and the mobility of proteins between subcellular compartments; to measure protein degradation kinetics without the need for time-course measurements; and to conduct high-throughput screens for regulators of protein turnover. Our experiments reveal the stable nature and asymmetric inheritance of nuclear pore complexes and identify regulators of N-end rule–mediated protein degradation.  相似文献   

15.
Photobleaching GFP reveals protein dynamics inside live cells   总被引:19,自引:0,他引:19  
Cell biologists have used photobleaching to investigate the lateral mobility of fluorophores on the cell surface since the 1970s. Fusions of green fluorescent protein (GFP) to specific proteins extend photobleaching techniques to the investigation of protein dynamics within the cell, leading to renewed interest in photobleaching experiments. This article revisits general photobleaching concepts, reviews what can be learned from them and discusses applications illustrating the potential of photobleaching GFP fusion proteins inside living cells.  相似文献   

16.
Using manual and automated high throughput microscopy (HTM), ligand-dependent trafficking of green fluorescent protein-androgen receptor (GFP-AR) was analyzed in fixed and living cells to determine its spatial distribution, solubility, mobility, and co-activator interactions. Within minutes, addition of the agonist R1881 resulted translocation of GFP-AR from the cytoplasm to the nucleus, where it displayed a hyperspeckled pattern and extraction resistance in low expressing cells. AR antagonists (Casodex, hydroxyflutamide) also caused nuclear translocation, however, the antagonist-bound GFP-AR had a more diffuse nuclear distribution, distinct from the agonist-bound GFP-AR, and was completely soluble; overexpressed GFP-AR in treated cells was extraction resistant, independent of ligand type. To more dramatically show the different effects of ligand on AR distribution, we utilized an AR with a mutation in the DNA binding domain (ARC619Y) that forms distinct foci upon exposure to agonists but retains a diffuse nuclear distribution in the presence of antagonists. Live-cell imaging of this mutant demonstrated that cytoplasmic foci formation occurs immediately upon agonist but not antagonist addition. Fluorescence recovery after photobleaching (FRAP) revealed that agonist-bound GFP-AR exhibited reduced mobility relative to unliganded or antagonist-bound GFP-AR. Importantly, agonist-bound GFP-AR mobility was strongly affected by protein expression levels in transiently transfected cells, and displayed reduced mobility even in slightly overexpressing cells. Cyan fluorescent protein-AR (CFP-AR) and yellow fluorescent protein-CREB binding protein (YFP-CBP) in the presence of agonists and antagonists were used to demonstrate that CFP-AR specifically co-localizes with YFP-CBP in an agonist dependent manner. Dual FRAP experiments demonstrated that CBP mobility mirrored AR mobility only in the presence of agonist. HTM enabled simultaneous studies of the sub-cellular distribution of GFP-AR and ARC619Y in response to a range of concentrations of agonists and antagonists (ranging from 10(-12) to 10(-5)) in thousands of cells. These results further support the notion that ligand specific interactions rapidly affect receptor and co-factor organization, solubility, and molecular dynamics, and each can be aberrantly affected by mutation and overexpression.  相似文献   

17.
18.
Fluorescence correlation spectroscopy (FCS) extracts information about molecular dynamics from the tiny fluctuations that can be observed in the emission of small ensembles of fluorescent molecules in thermodynamic equilibrium. Employing a confocal setup in conjunction with highly dilute samples, the average number of fluorescent particles simultaneously within the measurement volume (approximately 1 fl) is minimized. Among the multitude of chemical and physical parameters accessible by FCS are local concentrations, mobility coefficients, rate constants for association and dissociation processes, and even enzyme kinetics. As any reaction causing an alteration of the primary measurement parameters such as fluorescence brightness or mobility can be monitored, the application of this noninvasive method to unravel processes in living cells is straightforward. Due to the high spatial resolution of less than 0.5 microm, selective measurements in cellular compartments, e.g., to probe receptor-ligand interactions on cell membranes, are feasible. Moreover, the observation of local molecular dynamics provides access to environmental parameters such as local oxygen concentrations, pH, or viscosity. Thus, this versatile technique is of particular attractiveness for researchers striving for quantitative assessment of interactions and dynamics of small molecular quantities in biologically relevant systems.  相似文献   

19.
Perturbations in intracellular Ca2+ signaling may represent one mechanism underlying Alzheimer's disease (AD). The presenilin-1 gene (PS1), associated with the majority of early onset familial AD cases, has been implicated in this signaling pathway. Here we used the Xenopus oocyte expression system to investigate in greater detail the role of PS1 in intracellular Ca2+ signaling pathways. Treatment of cells expressing wild-type PS1 with a cell surface receptor agonist to stimulate the phosphoinositide second messenger pathway evoked Ca2+-activated Cl- currents that were significantly potentiated relative to controls. To determine which elements of the signal transduction pathway are responsible for the potentiation, we used photolysis of caged inositol 1,4,5-trisphosphate (IP3) and fluorescent Ca2+ imaging to demonstrate that PS1 potentiates IP3-mediated release of Ca2+ from internal stores. We show that an AD-linked mutation produces a potentiation in Ca2+ signaling that is significantly greater than that observed for wild-type PS1 and that cannot be attributed to differences in protein expression levels. Our findings support a role for PS1 in modulating IP3-mediated Ca2+ liberation and suggest that one pathophysiological mechanism by which PS1 mutations contribute to AD neurodegeneration may involve perturbations of this function.  相似文献   

20.
The understanding of signaling and metabolic processes in multicellular organisms requires knowledge of the spatial dynamics of small molecules and the activities of enzymes, transporters, and other proteins in vivo, as well as biophysical parameters inside cells and across tissues. The cellular distribution of receptors, ligands, and activation state must be integrated with information about the cellular distribution of metabolites in relation to metabolic fluxes and signaling dynamics in order to achieve the promise of in vivo biochemistry. Genetically encoded sensors are engineered fluorescent proteins that have been developed for a wide range of small molecules, such as ions and metabolites, or to report biophysical processes, such as transmembrane voltage or tension. First steps have been taken to monitor the activity of transporters in vivo. Advancements in imaging technologies and specimen handling and stimulation have enabled researchers in plant sciences to implement sensor technologies in intact plants. Here, we provide a brief history of the development of genetically encoded sensors and an overview of the types of sensors available for quantifying and visualizing ion and metabolite distribution and dynamics. We further discuss the pros and cons of specific sensor designs, imaging systems, and sample manipulations, provide advice on the choice of technology, and give an outlook into future developments.

Different types of genetically encoded sensors in plants can be used to quantify and visualize ion and metabolite distributions and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号