首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Detailed linkage and recombination rate maps are necessary to use the full potential of genome sequencing and population genomic analyses. We used a custom collared flycatcher 50 K SNP array to develop a high‐density linkage map with 37 262 markers assigned to 34 linkage groups in 33 autosomes and the Z chromosome. The best‐order map contained 4215 markers, with a total distance of 3132 cM and a mean genetic distance between markers of 0.12 cM . Facilitated by the array being designed to include markers from most scaffolds, we obtained a second‐generation assembly of the flycatcher genome that approaches full chromosome sequences (N50 super‐scaffold size 20.2 Mb and with 1.042 Gb (of 1.116 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates of 1.5–2.0 event (6.6–7.5 Mb) per My have changed the organization within chromosomes, rates high enough for inversions to potentially have been involved with many speciation events during avian evolution. The mean recombination rate was 3.1 cM /Mb and correlated closely with chromosome size, from 2 cM /Mb for chromosomes >100 Mb to >10 cM /Mb for chromosomes <10 Mb. This size dependence seemed entirely due to an obligate recombination event per chromosome; if 50 cM was subtracted from the genetic lengths of chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher recombination rate showed similar variation along chromosomes as chicken but lacked the large interior recombination deserts characteristic of zebra finch chromosomes.  相似文献   

2.
High density genetic maps are a reliable tool for genetic dissection of complex plant traits. Mapping resolution is often hampered by the variable crossover and non-crossover events occurring across the genome, with pericentromeric regions (pCENR) showing highly suppressed recombination rates. The efficiency of linkage mapping can further be improved by characterizing and understanding the distribution of recombinational activity along individual chromosomes. In order to evaluate the genome wide recombination rate in common beans (Phaseolus vulgaris L.) we developed a SNP-based linkage map using the genotype-by-sequencing approach with a 188 recombinant inbred line family generated from an inter gene pool cross (Andean x Mesoamerican). We identified 1,112 SNPs that were subsequently used to construct a robust linkage map with 11 groups, comprising 513 recombinationally unique marker loci spanning 943 cM (LOD 3.0). Comparative analysis showed that the linkage map spanned >95% of the physical map, indicating that the map is almost saturated. Evaluation of genome-wide recombination rate indicated that at least 45% of the genome is highly recombinationally suppressed, and allowed us to estimate locations of pCENRs. We observed an average recombination rate of 0.25 cM/Mb in pCENRs as compared to the rest of genome that showed 3.72 cM/Mb. However, several hot spots of recombination were also detected with recombination rates reaching as high as 34 cM/Mb. Hotspots were mostly found towards the end of chromosomes, which also happened to be gene-rich regions. Analyzing relationships between linkage and physical map indicated a punctuated distribution of recombinational hot spots across the genome.  相似文献   

3.
A porcine genome linkage map composed of 194 microsatellite markers was constructed with a large-scale White Duroc × Erhualian resource population. The marker order on this linkage map was consistent with the USDA-MARC reference map except for two markers on SSC3, two markers on SSC13 and two markers on SSCX. The length of the sex-averaged map (2344.9 cM) was nearly the same as that of the USDA-MARC and NIAI map. Highly significant heterogeneity in recombination rates between sexes was observed. Except for SSC1 and SSC13, the female autosomes had higher average recombination rates than the male autosomes. Moreover, recombination rates in the pseudoautosomal region were greater in males than in females. These observations are consistent with those of previous reports. The recombination rates on each paternal and maternal chromosome of F2 animals were calculated. Recombination rates were not significantly affected by the age (in days) or parity of the F1 animals. However, recombination rates on paternal chromosomes were affected by the mating season of the F1 animals. This could represent an effect of environmental temperature on spermatogenesis.  相似文献   

4.
To construct a genetic linkage map of the heterothallic yeast, Cryptococcus neoformans (Filobasidiella neoformans), we crossed two mating-compatible strains and analyzed 94 progeny for the segregation of 301 polymorphic markers, consisting of 228 restriction site polymorphisms, 63 microsatellites, two indels, and eight mating-type (MAT)-associated markers. All but six markers showed no significant (P < 0.05) segregation distortion. At a minimum LOD score of 6.0 and a maximum recombination frequency of 0.30, 20 linkage groups were resolved, resulting in a map length of approximately 1500 cM. Average marker density is 5.4 cM (range 1-28.7 cM). Hybridization of selected markers to blots of electrophoretic karyotypes unambiguously assigned all linkage groups to chromosomes and led us to conclude that the C. neoformans genome is approximately 20.2 Mb, comprising 14 chromosomes ranging in size from 0.8 to 2.3 Mb, with a ratio of approximately 13.2 kb/cM averaged across the genome. However, only 2 of 12 ungrouped markers hybridized to chromosome 10. The hybridizations revealed at least one possible reciprocal translocation involving chromosomes 8, 9, and 12. This map has been critical to genome sequence assembly and will be essential for future studies of quantitative trait inheritance.  相似文献   

5.
The small annual grass Brachypodium distachyon (Brachypodium) is rapidly emerging as a powerful model system to study questions unique to the grasses. Many Brachypodium resources have been developed including a whole genome sequence, highly efficient transformation and a large germplasm collection. We developed a genetic linkage map of Brachypodium using single nucleotide polymorphism (SNP) markers and an F2 mapping population of 476 individuals. SNPs were identified by targeted resequencing of single copy genomic sequences. Using the Illumina GoldenGate Genotyping platform we placed 558 markers into five linkage groups corresponding to the five chromosomes of Brachypodium. The unusually long total genetic map length, 1,598 centiMorgans (cM), indicates that the Brachypodium mapping population has a high recombination rate. By comparing the genetic map to genome features we found that the recombination rate was positively correlated with gene density and negatively correlated with repetitive regions and sites of ancestral chromosome fusions that retained centromeric repeat sequences. A comparison of adjacent genome regions with high versus low recombination rates revealed a positive correlation between interspecific synteny and recombination rate.  相似文献   

6.
The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.  相似文献   

7.
To provide a gene-based comparative map and to examine a porcine genome assembly using bacterial artificial chromosome-based sequence, we have attempted to assign 128 genes localized on human chromosome 14q (HSA14q) to a porcine 7000-rad radiation hybrid (IMpRH) map. This study, together with earlier studies, has demonstrated the following. (i) 126 genes were incorporated into two SSC7 RH linkage groups by C artha G ene analysis. (ii) In the remaining two genes, TOX4 linked to TCRA located in SSC7 by two-point analysis, whereas SIP1 showed no significant linkage with any gene/marker registered in the IMpRH Web Server. (iii) In the two groups, the gene clusters located from 19.9 to 36.5 Mb on HSA14q11.2-q13.3 and from 64.0 to 104.3 Mb on HSA14q23-q32.33 respectively were assigned to SSC7q21-q26. (iv) Comparison of the gene order between the present RH map and the latest porcine sequence assembly revealed some inconsistencies, and a redundant arrangement of 16 genes in the sequence assembly.  相似文献   

8.
Recent advances in technologies for high-throughout single-nucleotide polymorphism (SNP)-based genotyping have improved efficiency and cost so that it is now becoming reasonable to consider the use of SNPs for genomewide linkage analysis. However, a suitable screening set of SNPs and a corresponding linkage map have yet to be described. The SNP maps described here fill this void and provide a resource for fast genome scanning for disease genes. We have evaluated 6,297 SNPs in a diversity panel composed of European Americans, African Americans, and Asians. The markers were assessed for assay robustness, suitable allele frequencies, and informativeness of multi-SNP clusters. Individuals from 56 Centre d'Etude du Polymorphisme Humain pedigrees, with >770 potentially informative meioses altogether, were genotyped with a subset of 2,988 SNPs, for map construction. Extensive genotyping-error analysis was performed, and the resulting SNP linkage map has an average map resolution of 3.9 cM, with map positions containing either a single SNP or several tightly linked SNPs. The order of markers on this map compares favorably with several other linkage and physical maps. We compared map distances between the SNP linkage map and the interpolated SNP linkage map constructed by the deCode Genetics group. We also evaluated cM/Mb distance ratios in females and males, along each chromosome, showing broadly defined regions of increased and decreased rates of recombination. Evaluations indicate that this SNP screening set is more informative than the Marshfield Clinic's commonly used microsatellite-based screening set.  相似文献   

9.
Identification of predictive markers in QTL regions that impact production traits in commercial populations of swine is dependent on construction of dense comparative maps with human and mouse genomes. Chromosomal painting in swine suggests that large genomic blocks are conserved between pig and human, while mapping of individual genes reveals that gene order can be quite divergent. High-resolution comparative maps in regions affecting traits of interest are necessary for selection of positional candidate genes to evaluate nucleotide variation causing phenotypic differences. The objective of this study was to construct an ordered comparative map of human chromosome 10 and pig chromosomes 10 and 14. As a large portion of both pig chromosomes are represented by HSA10, genes at regularly spaced intervals along this chromosome were targeted for placement in the porcine genome. A total of 29 genes from human chromosome 10 were mapped to porcine chromosomes 10 (SSC10) and 14 (SSC14) averaging about 5 Mb distance of human DNA per marker. Eighteen genes were assigned by linkage in the MARC mapping population, five genes were physically assigned with the IMpRH mapping panel and seven genes were assigned on both maps. Seventeen genes from human 10p mapped to SSC10, and 12 genes from human 10q mapped to SSC14. Comparative maps of mammalian species indicate that chromosomal segments are conserved across several species and represent syntenic blocks with distinct breakpoints. Development of comparative maps containing several species should reveal conserved syntenic blocks that will allow us to better define QTL regions in livestock.  相似文献   

10.
A comprehensive linkage map for chicken chromosome Z was constructed as the result of a large-scale screening of single nucleotide polymorphisms (SNPs). A total of 308 SNPs were assigned to Z based on the genotype distribution among 182 birds representing several populations. A linkage map comprising 210 markers and spanning 200.9 cM was established by analyzing a small Red junglefowl/White Leghorn intercross. There was excellent agreement between the linkage map for Z and a recently released assembly of the chicken genome (May 2006). Almost all SNPs assigned to chromosome Z in the present study are on Z in the new genome assembly. The remaining 12 loci are all found on unassigned contigs that can now be assigned to Z. The average recombination rate was estimated at 2.7 cM/Mb but there was a very uneven distribution of recombination events with both cold and hot spots of recombination. The existence of one of the major hot spots of recombination, located around position 39.4 Mb, was supported by the observed pattern of linkage disequilibrium. Thirteen markers from unassigned contigs were shown to be located on chromosome W. Three of these contigs included genes that have homologues on chromosome Z. The preliminary assignment of three more genes to the gene-poor W chromosome may be important for studies on the mechanism of sex determination and dosage compensation in birds.  相似文献   

11.
Revealing the genetic basis of reproductive isolation is fundamental for understanding the speciation process. Chromosome speciation models propose a role for chromosomal rearrangements in promoting the build up of reproductive isolation between diverging populations and empirical data from several animal and plant taxa support these models. The pied flycatcher and the collared flycatcher are two closely related species that probably evolved reproductive isolation during geographical separation in Pleistocene glaciation refugia. Despite the short divergence time and current hybridization, these two species demonstrate a high degree of intrinsic post‐zygotic isolation and previous studies have shown that traits involved in mate choice and hybrid viability map to the Z‐chromosome. Could rearrangements of the Z‐chromosome between the species explain their reproductive isolation? We developed high coverage Z‐chromosome linkage maps for both species, using gene‐based markers and large‐scale SNP genotyping. Best order maps contained 57–62 gene markers with an estimated average density of one every 1–1.5 Mb. We estimated the recombination rates in flycatcher Z‐chromosomes to 1.1–1.3 cM/Mb. A comparison of the maps of the two species revealed extensive co‐linearity with no strong evidence for chromosomal rearrangements. This study does therefore not provide support the idea that sex chromosome rearrangements have caused the relatively strong post‐zygotic reproductive isolation between these two Ficedula species.  相似文献   

12.
T. M. Barnes  Y. Kohara  A. Coulson    S. Hekimi 《Genetics》1995,141(1):159-179
The genetic map of each Caenorhabditis elegans chromosome has a central gene cluster (less pronounced on the X chromosome) that contains most of the mutationally defined genes. Many linkage group termini also have clusters, though involving fewer loci. We examine the factors shaping the genetic map by analyzing the rate of recombination and gene density across the genome using the positions of cloned genes and random cDNA clones from the physical map. Each chromosome has a central gene-dense region (more diffuse on the X) with discrete boundaries, flanked by gene-poor regions. Only autosomes have reduced rates of recombination in these gene-dense regions. Cluster boundaries appear discrete also by recombination rate, and the boundaries defined by recombination rate and gene density mostly, but not always, coincide. Terminal clusters have greater gene densities than the adjoining arm but similar recombination rates. Thus, unlike in other species, most exchange in C. elegans occurs in gene-poor regions. The recombination rate across each cluster is constant and similar; and cluster size and gene number per chromosome are independent of the physical size of chromosomes. We propose a model of how this genome organization arose.  相似文献   

13.
Using immunolocalization of MLH1, a mismatch repair protein that marks crossover sites along synaptonemal complexes, we estimated the total length of the genetic map, the recombination rate and crossover distribution in the American mink ( Mustela vison ). We prepared spreads from 130 spermatocytes of five male minks and mapped 3320 MLH1 foci along 1820 bivalents. The total recombination length of the male mink genome, based on the mean number of MLH1 foci for all chromosomes, was 1327 cM. The overall recombination rate was estimated to be 0.48 cM/Mb. In all bivalents, we observed prominent peaks of MLH1 foci near the distal ends and a paucity of them near the centromeres. This indicates that genes located at proximal regions of the chromosomes should display much tighter genetic linkage than physically equidistant markers located near the telomeres.  相似文献   

14.
We constructed a 5000-rad comprehensive radiation hybrid (RH) map of the porcine (Sus scrofa) genome and compared the results with the human genome. Of 4475 typed markers, 4016 (89.7%) had LOD >5 compared with the markers used in our previous RH map by means of two-point analysis and were grouped onto the 19 porcine chromosomes (SSCs). All mapped markers had LOD >3 as determined by RHMAPPER analysis. The current map comprised 430 microsatellite (MS) framework markers, 914 other MS markers, and 2672 expressed sequence tags (ESTs). The whole-genome map was 8822.1 cR in length, giving an average marker density of 0.342 Mb/cR. The average retention frequency was 35.8%. Using BLAST searches of porcine ESTs against the RefSeq human nucleotide and amino acid sequences (release 22), we constructed high-resolution comparative maps of each SSC and each human chromosome (HSA). The average distance between ESTs in the human genome was 1.38 Mb. SSC contained 50 human chromosomal syntenic groups, and SSC11, SSC12, and SSC16 were only derived from the HSA13q, HSA17, and HSA5 regions, respectively. Among 38 porcine terminal regions, we found that at least 20 regions have been conserved between the porcine and human genomes; we also found four paralogous regions for the major histocompatibility complex (MHC) on SSC7, SSC2, SSC4, and SSC1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A comprehensive linkage map, including 236 linked markers with a total sex-average map length of about 2300 cM, covering nearly all parts of the pig genome has been established. Linkage groups were assigned to all 18 autosomes, the X chromosome and the X/Y pseudoautosomal region. Several new gene assignments were made including the assignment of linkage group U1 (EAK-HPX) to chromosome 9. The linkage map includes 77 type I loci informative for comparative mapping and 72 in situ mapped markers physically anchoring the linkage groups on chromosomes. A highly significant heterogeneity in recombination rates between sexes was observed with a general tendency towards an excess of female recombination. The average ratio of female to male recombination was estimated at 1–4:1 but this parameter varied between chromosomes as well as between regions within chromosomes. An intriguing finding was that blood group loci were overrepresented at the distal ends of linkage groups.  相似文献   

16.
Homologous meiotic recombination occurs in most sexually reproducing organisms, yet its evolutionary advantages are elusive. Previous research explored recombination in the honeybee, a eusocial hymenopteran with an exceptionally high genome-wide recombination rate. A comparable study in a non-social member of the Hymenoptera that would disentangle the impact of sociality from Hymenoptera-specific features such as haplodiploidy on the evolution of the high genome-wide recombination rate in social Hymenoptera is missing. Utilizing single-nucleotide polymorphisms (SNPs) between two Nasonia parasitoid wasp genomes, we developed a SNP genotyping microarray to infer a high-density linkage map for Nasonia. The map comprises 1,255 markers with an average distance of 0.3 cM. The mapped markers enabled us to arrange 265 scaffolds of the Nasonia genome assembly 1.0 on the linkage map, representing 63.6% of the assembled N. vitripennis genome. We estimated a genome-wide recombination rate of 1.4–1.5 cM/Mb for Nasonia, which is less than one tenth of the rate reported for the honeybee. The local recombination rate in Nasonia is positively correlated with the distance to the center of the linkage groups, GC content, and the proportion of simple repeats. In contrast to the honeybee genome, gene density in the parasitoid wasp genome is positively associated with the recombination rate; regions of low recombination are characterized by fewer genes with larger introns and by a greater distance between genes. Finally, we found that genes in regions of the genome with a low recombination frequency tend to have a higher ratio of non-synonymous to synonymous substitutions, likely due to the accumulation of slightly deleterious non-synonymous substitutions. These findings are consistent with the hypothesis that recombination reduces interference between linked sites and thereby facilitates adaptive evolution and the purging of deleterious mutations. Our results imply that the genomes of haplodiploid and of diploid higher eukaryotes do not differ systematically in their recombination rates and associated parameters.  相似文献   

17.
A restriction fragment length polymorphism (RFLP) map has been constructed of the nuclear genome of the plant pathogenic ascomycete Cochliobolus heterostrophus. The segregation of 128 RFLP and 4 phenotypic markers was analyzed among 91 random progeny of a single cross; linkages were detected among 126 of the markers. The intact chromosomal DNAs of the parents and certain progeny were separated using pulsed field gel electrophoresis and hybridized with probes used to detect the RFLPs. In this way, 125 markers were assigned to specific chromosomes and linkages among 120 of the markers were confirmed. These linkages totalled 941 centimorgans (cM). Several RFLPs and a reciprocal translocation were identified tightly linked to Tox1, a locus controlling host-specific virulence. Other differences in chromosome arrangement between the parents were also detected. Fourteen gaps of at least 40 cM were identified between linkage groups on the same chromosomes; the total map length was therefore estimated to be, at a minimum, 1501 cM. Fifteen A chromosomes ranging from about 1.3 megabases (Mb) to about 3.7 Mb were identified; one of the strains also has an apparent B chromosome. This chromosome appears to be completely dispensable; in some progeny, all of 15 markers that mapped to this chromosome were absent. The total genome size was estimated to be roughly 35 Mb. Based on these estimates of map length and physical genome size, the average kb/cM ratio in this cross was calculated to be approximately 23. This low ratio of physical length to map distance should make this RFLP map a useful tool for cloning genes.  相似文献   

18.
This study presents the first genetic linkage map for the European flat oyster Ostrea edulis . Two hundred and forty-six AFLP and 20 microsatellite markers were genotyped in a three-generation pedigree comprising two grandparents, two parents and 92 progeny. Chi-square goodness-of-fit tests revealed high segregation distortion, which was significant for 32.8% of markers. Sixteen microsatellites and 235 AFLPs (170 type 1:1 AFLPs and 65 type 3:1 AFLPs) were used to build sex-specific linkage maps using crimap software. The first parental map (P1) consisted of 104 markers grouped in nine linkage groups, and spanned 471.2 cM with an average spacing of 4.86 cM. The second parental map (P2) consisted of 117 markers grouped in 10 linkage groups (which equals the haploid chromosome number), and covered 450.0 cM with an average spacing of 4.21 cM. The estimated coverage of the genome was 82.4% for the P1 map and 84.2% for the P2 map. Eight linkage groups that were probably homologous between the two parents contained the same microsatellites and 3:1 AFLPs (segregating through both parents). Distorted markers were not randomly distributed across the genome and tended to cluster in a few linkage groups. Sex-specific differences in recombination rates were evident. This first-generation genetic linkage map for O. edulis represents a major step towards the mapping of QTL such as resistance to bonamiasis, a parasitosis that has drastically decreased populations of flat oysters since the 1960s.  相似文献   

19.
20.
Second‐generation, sex‐specific genetic linkage maps were generated for the economically important estuarine‐dependent marine fish Sciaenops ocellatus (red drum). The maps were based on F1 progeny from each of two single‐pair mating families. A total of 237 nuclear‐encoded microsatellite markers were mapped to 25 linkage groups. The female map contained 226 markers, with a total length of 1270.9 centiMorgans (cM) and an average inter‐marker interval of 6.53 cM; the male map contained 201 markers, with a total length of 1122.9 cM and an average inter‐marker interval of 6.03 cM. The overall recombination rate was approximately equal in the two sexes (♀:♂ = 1.03:1). Recombination rates in a number of linkage intervals, however, differed significantly between the same sex in both families and between sexes within families. The former occurred in 2.4% of mapped intervals, while the latter occurred in 51.2% of mapped intervals. Sex‐specific recombination rates varied within chromosomes, with regions of both female‐biased and male‐biased recombination. Original clones from which the microsatellite markers were generated were compared with genome sequence data for the spotted green puffer, Tetraodon nigroviridis; a total of 43 matches were located in 17 of 21 chromosomes of T. nigroviridis, while seven matches were in unknown portions of the T. nigroviridis genome. The map for red drum provides a new, useful tool for aquaculture, population genetics, and comparative genomics of this economically important marine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号