首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our research, single nucleotide polymorphisms (SNPs) of exon regions of the myostatin gene were detected by PCR-SSCP in the Bian chicken and three reference chicken populations (Jinghai, Youxi, and Arbor Acre). Four novel SNPs (G2283A, C7552T, C7638T, and T7661A) were detected. The findings from the least square means showed that Bian chickens with EE and DE genotypes had significantly higher body weight, at 6-18?weeks of age, than those of the DD genotype (P?相似文献   

2.
G Zhang  L Zhang  Y Wei  J Wang  F Ding  G Dai  K Xie 《Animal biotechnology》2012,23(3):184-193
Myostatin, or growth and differentiation factor 8, is a member of the transforming growth factor-β superfamily; it functions as a negative regulator of skeletal muscle development and growth in mammals. In this study, single nucleotide polymorphisms in the 5' regulatory region and exon 1 of the myostatin gene were detected by PCR-SSCP in the Bian, Jinghai, Youxi, and Arbor Acre chickens, and the associations of the polymorphisms with reproduction traits were analyzed. Seven SNPs (A326G, C334G, C1346T, G1375A, A1473G, G1491A, and G2283A) were found in the myostatin gene. Association analysis showed that the G2283A were significantly associated with reproduction traits. Bian chickens of the GG genotype had a greater age at first egg than those of the GA and AA genotypes (P?相似文献   

3.
Minami SB  Masuda S  Usui S  Mutai H  Matsunaga T 《Gene》2012,501(2):193-197
It is rarely reported that two distinct genetic mutations affecting hearing have been found in one family. We report on a family exhibiting comorbid mutation of GJB2 and WFS1. A four-generation Japanese family with autosomal dominant sensorineural hearing loss was studied. In 7 of the 24 family members, audiometric evaluations and genetic analysis were performed. We detected A-to-C nucleotide transversion (c.2576G>C) in exon 8 of WFS1 that was predicted to result in an arginine-to-proline substitution at codon 859 (R859P), G-to-A transition (c.109G>A) in exon 2 of GJB2 that was predicted to result in a valine-to-isoleucine substitution at codon 37 (V37I), and C-to-T transition (c.427C>T) in exon 2 of GJB2 that was predicted to result in an arginine-to-tryptophan substitution at codon 143 (R143W). Two individuals who had heterozygosity of GJB2 mutations and heterozygosity of WFS1 mutations showed low-frequency hearing loss. One individual who had homozygosity of GJB2 mutation without WFS1 mutation had moderate, gradual high tone hearing loss. On the other hand, a moderate flat loss configuration was seen in one individual who had compound heterozygosity of GJB2 and heterozygosity of WFS1 mutations. Our results indicate that the individual who has both GJB2 and WFS1 mutations can show GJB2 phenotype.  相似文献   

4.
极长链脂肪酸延长酶(elongation of very-long-chain fatty acids, ELOVLs)是脂肪酸合成过程中的关键限速酶,在脂类的生物合成及脂肪酸代谢等调控方面作用显著。为研究宁夏地方优良品种静原鸡ELOVL2基因多态性及其编码蛋白质的结构与功能,以原鸡ELOVL2基因序列作为参考序列,针对ELOVL2基因的8个外显子序列设计特异引物并扩增,经DNA混合池测序筛选出存在突变位点的外显子序列,运用PCR-SSCP技术检测其多态性,经序列拼接后对ELOVL2 CDS区序列进行功能生物信息学分析。研究结果表明,静原鸡ELOVL2基因仅exon7和exon8发生单碱基突变(exon7为c.708 G>A, exon8为c.888 T>C),均未引起氨基酸的改变,属同义突变。在exon7和exon8扩增片段中分别检测出3种(AA, AG和GG)、2种(CC和TC)基因型。遗传特性分析显示,E2e7呈中度多态(0.250.05)。生物信息学分析表明,ELOVL2 CDS序列全长为894 bp,共编码297个氨基酸。其原子组成为C1638H2444N394O406S15,分子量为34.63 kD,等电点(pI)为9.40;存在7个跨膜结构,21个磷酸化位点,无信号肽序列,为稳定的水溶性蛋白;ELOVL2基因在进化中高度保守。该研究结果将为进一步研究ELOVL2基因在静原鸡肉质方面的作用及功能提供参考。  相似文献   

5.
Two point mutations of ABCA1 gene were found in a patient with Tangier disease (TD): i) G>C in intron 2 (IVS2 +5G>C) and ii) c.844 C>T in exon 9 (R282X). The IVS2 +5G>C mutation was also found in the brother of another deceased TD patient, but not in 78 controls and 33 subjects with low HDL. The IVS2 +5G>C mutation disrupts ABCA1 pre-mRNA splicing in fibroblasts, leading to three abnormal mRNAs: devoid of exon 2 (Ex2-/mRNA), exon 4 (Ex4-/mRNA), or both these exons (Ex2-/Ex4-/mRNA), each containing a translation initiation site. These mRNAs are expected either not to be translated or generate short peptides. To investigate the in vitro effect of IVS2 +5G>C mutation, we constructed two ABCA1 minigenes encompassing Ex1-Ex3 region, one with wild-type (WTgene) and the other with mutant (MTgene) intron 2. These minigenes were transfected into COS1 and NIH3T3, two cell lines with a different ABCA1 gene expression. In COS1 cells, WTgene pre-mRNA was spliced correctly, while the splicing of MTgene pre-mRNA resulted in Ex2-/mRNA. In NIH3T3, no splicing of MTgene pre-mRNA was observed, whereas WTgene pre-mRNA was spliced correctly. These results stress the complexity of ABCA1 pre-mRNA splicing in the presence of splice site mutations.  相似文献   

6.
Myostatin, or growth and differentiation factor 8, is a member of the transforming growth factor-β superfamily; it functions as a negative regulator of skeletal muscle development and growth in mammals. In this study, single nucleotide polymorphisms in the 5′ regulatory region and exon 1 of the myostatin gene were detected by PCR–SSCP in the Bian, Jinghai, Youxi, and Arbor Acre chickens, and the associations of the polymorphisms with reproduction traits were analyzed. Seven SNPs (A326G, C334G, C1346T, G1375A, A1473G, G1491A, and G2283A) were found in the myostatin gene. Association analysis showed that the G2283A were significantly associated with reproduction traits. Bian chickens of the GG genotype had a greater age at first egg than those of the GA and AA genotypes (P < 0.01). Correspondingly, Bian chickens of the GA and AA genotypes had larger egg number at 300 days than those of the GG genotype (P < 0.05 and P < 0.01, respectively). Bian chickens of the AA genotype had significantly higher body weight at 300 days than those of the GG genotype (P < 0.05). These results suggested that the myostatin gene may have certain effects on reproduction traits other than merely as a negative regulator of skeletal muscle development and growth in mammals previously reported.  相似文献   

7.
8.
Autosomal-recessive high-grade axial myopia was diagnosed in Bedouin Israeli consanguineous kindred. Some affected individuals also had variable expressivity of early-onset cataracts, peripheral vitreo-retinal degeneration, and secondary sight loss due to severe retinal detachments. Through genome-wide linkage analysis, the disease-associated gene was mapped to ~1.7 Mb on chromosome 3q28 (the maximum LOD score was 11.5 at θ = 0 for marker D3S1314). Sequencing of the entire coding regions and intron-exon boundaries of the six genes within the defined locus identified a single mutation (c.1523G>T) in exon 10 of LEPREL1, encoding prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The mutation affects a glycine that is conserved within P3H isozymes. Analysis of wild-type and p.Gly508Val (c.1523G>T) mutant recombinant P3H2 polypeptides expressed in insect cells showed that the mutation led to complete inactivation of P3H2.  相似文献   

9.
Lmbr1 is the key candidate gene controlling vertebrate limb development, but its effects on animal growth and carcass traits have never been reported. In this experiment, lmbr1 was taken as the candidate gene affecting chicken growth and carcass traits. T/C and G/A mutations located in exon 16 and one A/C mutation located in intron 5 of chicken lmbr1 were detected from Silky, White Plymouth Rock broilers and their F2 crossing chickens by PCR-SSCP and sequencing methods. The analysis of variance (ANOVA) results suggests that T/C polymorphism of exon 16 had significant association with eviscerated yield rate (EYR), gizzard rate (GR), shank and claw rate (SCR) and shank girth (SG); A/C polymorphism of intron 5 was significantly associated with SCR, liver rate and head-neck weight (HNW), while both sites had no significant association with other growth and carcass traits. These results demonstrate that lmbr1 gene could be a genetic locus or linked to a major gene significantly affecting these growth and carcass traits in chicken.  相似文献   

10.
11.
Lmbr1 is the key candidate gene controlling vertebrate limb development, but its effects on animal growth and carcass traits have never been reported. In this experiment, lmbr1 was taken as the candidate gene affecting chicken growth and carcass traits. T/C and G/A mutations located in exon 16 and one A/C mutation located in intron 5 of chicken lmbr1 were detected from Silky, White Plymouth Rock broilers and their F2 crossing chickens by PCR-SSCP and sequencing methods. The analysis of variance (ANOVA) results suggests that T/C polymorphism of exon 16 had significant association with eviscerated yield rate (EYR), gizzard rate (GR), shank and claw rate (SCR) and shank girth (SG); A/C polymorphism of intron 5 was significantly associated with SCR, liver rate and head-neck weight (HNW), while both sites had no significant association with other growth and carcass traits. These results demonstrate that lmbr1 gene could be a genetic locus or linked to a major gene significantly affecting these growth and carcass traits in chicken. Supported by the State Major Basic Research Development Program (Grant No. G20000161) and Beijing Natural Science Foundation (Grant No. 5011002)  相似文献   

12.
This study aimed at the identification of genetic variations in the myostatin (MSTN) gene and testing their effects on carcass quality traits. We comparatively sequenced Giant Grey (GG) and New Zealand White (NZW) rabbits that were founders of a cross‐bred population. Alignment of our sequence data with the GenBank sequence of the rabbit MSTN gene (Ensembl Gene ID ENSOCUG00000012663) identified three single nucleotide polymorphisms (SNPs). The two novel SNPs (c.?125T>C, c.373+234G>A) and one known SNP (c.747+34C>T) were subsequently analysed for linkage with carcass composition traits in 363 F2 animals of the cross GG × NZW. Significant linkage was found between c.373+234G>A and nine carcass composition traits (< 0.05). No significant effects were found for c.?125T>C and c.747+34C>T. Because the linked SNP is located in intron 1 and no genetic variation was found in the coding region, further investigations are necessary to understand the functional effect of the c.373+234G>A variant on the variability of the traits.  相似文献   

13.
We have identified 16 different mutations of the low-density lipoprotein receptor (LDLR) gene in 25 unrelated Korean patients with heterozygous familial hypercholesterolemia (FH), including five novel mutations, C83Y, 661del17, 1705insCTAG, C675X, and 941-1G>A. The 1705insCTAG mutation in which the four 3 cent -terminal nucleotides of exon 11 are duplicated was found to prevent splicing of exon 11 and would therefore generate a truncated polypeptide. The in-frame 36-bp deletion (1591del36) in exon 11, which had been reported only in one Korean FH patient, was also found. We showed that this change affects transport of the LDL receptor from the endoplasmic reticulum to the cell surface. In addition, we found 8 mutations (-136C>T, E119K, E207K, E207X, F382L, R574Q, 1846-1G>A, and P664L) that had been described in other ethnic groups but not in Koreans, and 2 mutations (R94H and D200N) that had been described in Koreans as well as other ethnic groups. 5 mutations (1591del36, E119K, E207X, E207K, and P664L) were found more than once in the Korean FH samples. Identification of the novel and recurring LDLR mutations in Korean FH patients should facilitate prenatal and early diagnosis in families at high risk of FH.  相似文献   

14.
Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.  相似文献   

15.
PURPOSE: Gitelman's syndrome (GS) is an inherited autosomal recessive disorder due to loss of function mutations in the SLC12A3 gene encoding the Na-Cl co-transporter (NCCT), the target of thiazide diuretics. The defective function of the NCCT, which normally is expressed in the apical membrane of the distal convolute tubule in the kidney, leads to mild hypotension, hypokalemia, hyperreninemic hyperaldosteronism, mild metabolic alkalosis, hypomagnesemia and hypocalciuria. Up to now, more than 100 mutations of the SLC12A3 gene have been described in GS patients. METHODS: We have collected 30 patients from Sweden with a clinical diagnosis of GS and undertaken a mutation screening by SSCP and successive sequencing of the 26 exons and intronic boundaries. Both mutations were identified in most (n = 28, 93%) and at least one mutation was identified in all patients. RESULTS: We found 22 different mutations evenly distributed throughout the gene, 11 of which have not been described previously. The new variants include 8 missense mutations (Glu68Lys, His69Asn, Argl45His, Vall53Met, Gly230Asp, Gly342Ala, Val677Leu and Gly867Ser), 1 insertion (c.834_835insG on exon 6) and 2 splice-site mutations (c.2667 + lT>G substitution in splicing donor site after exon 22, c.1569-1G>A substitution in the splicing acceptor site before exon 13). CONCLUSION: In Swedish patients with the clinical features of GS, disease-causing mutations in the SLC12A3 gene were identified in most patients. The spectrum of GS mutations is wide making full mutation screening of the SLC12A3 gene necessary to confirm the diagnosis.  相似文献   

16.
Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.  相似文献   

17.
目的:探讨陕西汉族人群中LKB1基因位点rs741765(380CT)及rs6510599(459GA)单核苷酸多态性(SNPs)与2型糖尿病遗传易感性及相关临床代谢指标的关系。方法:采用等位基因特异性引物PCR(SASP-PCR)对2型糖尿病患者130例及健康对照组100例进行LKB1基因内含子6 rs741765(380CT)及内含子1 rs6510599(459GA)两个位点进行基因多态性筛查,并测序鉴定,分析其基因多态性位点与2型糖尿病临床代谢指标关系。结果:rs741765(380CT)基因突变情况:2型糖尿病患者TT基因型频率显著高于健康对照组(P=0.023);TT基因2型糖尿病组中糖化血红蛋白水平及低密度脂蛋白胆固醇水平在型中明显升高(P=0.030;P=0.002);健康对照组中,空腹血糖水平在TT基因型中明显升高(P=0.011)。rs6510599(459GA)基因突变情况:AA基因型频率在2型糖尿病组及健康对照组间无显著性差异(P0.05);该基因位点与临床指标亦无相关性(P0.05)。结论:陕西汉族人群中LKB1基因内含子6 rs741765(380CT)及内含子1 rs6510599(459GA)存在基因多态性。LKB1基因内含子6 rs741765(380CT)基因多态性与2型糖尿病的发病有相关性。LKB1基因内含子1 rs6510599(459GA)基因多态性与2型糖尿病的发病无相关性。  相似文献   

18.
19.
目的:明确两个中国北方汉族马凡综合征(Marfan syndrome,MFS)家系的临床特点,并对其进行基因诊断。方法:对两个家系进行家系调查和系谱分析,应用聚合酶链式反应-DNA测序方法对原纤维蛋白1基因(Fibrillin-1,FBN1)的所有外显子进行测序。应用Swiss-model、Polyphen-2和SIFT软件对发现的变异位点进行功能预测。结果:两个家系均呈常染色显性遗传特点,在家系1患者中发现一个新的插入突变,即第13外显子1691位碱基处插入碱基A(1691 ins A),导致蛋白在第571位氨基酸处翻译提前终止。此外,在家系2患者中发现一个已知的点突变,即第27外显子第3463位碱基由G变为A(3463 GA),导致第1155位氨基酸由天冬氨酸变为天冬酰胺。这两个变异位点在家系的健康人及50例健康对照中均未出现。功能预测发现这两个变异位点均可能会影响FBN1蛋白的结构或功能。结论:在两个MFS家系中发现一个新插入突变位点(1691 ins A)和一个已知点突变位点(3463 GA),为扩大FBN1基因的突变谱及进一步阐明FBN1基因突变在MFS中的作用提供理论依据。  相似文献   

20.
Distinctive facial features consisting of hypertelorism, telecanthus, blepharophimosis, blepharoptosis, epicanthus inversus, periumbilical defects, and skeletal anomalies are seen in autosomal-recessive Carnevale, Malpuech, Michels, and oculo-skeletal-abdominal (OSA) syndromes. The gene or genes responsible for these syndromes were heretofore unknown. We report on three individuals from two consanguineous Turkish families with findings characteristic of these syndromes, including facial dysmorphism, periumbilical depression, mixed hearing loss, radioulnar synostosis, and coccygeal appendage. Homozygosity mapping yielded an autozygous region on chromosome 3q27 in both families. In one family, whole exome sequencing revealed a missense mutation, MASP1 c.2059G>A (p.G687R), that cosegregated with the phenotype. In the second family, Sanger sequencing of MASP1 revealed a nonsense mutation, MASP1 c.870G>A (p.W290X), that also cosegregated with the phenotype. Neither mutation was found in 192 Turkish controls or 1200 controls of various other ancestries. MASP1 encodes mannan-binding lectin serine protease 1. The two mutations occur in a MASP1 isoform that has been reported to process IGFBP-5, thereby playing a critical role in insulin growth factor availability during craniofacial and muscle development. These results implicate mutations of MASP1 as the cause of a human malformation syndrome and demonstrate the involvement of MASP1 in facial, umbilical, and ear development during the embryonic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号