首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocytes differ from columnar epithelial cells by their multipolar organization, which follows the initial formation of central lumen-sharing clusters of polarized cells as observed during liver development and regeneration. The molecular mechanism for hepatocyte polarity establishment, however, has been comparatively less studied than those for other epithelial cell types. Here, we show that the tight junction protein Par3 organizes hepatocyte polarization via cooperating with the small GTPase Cdc42 to target atypical protein kinase C (aPKC) to a cortical site near the center of cell–cell contacts. In 3D Matrigel culture of human hepatocytic HepG2 cells, which mimics a process of liver development and regeneration, depletion of Par3, Cdc42, or aPKC results in an impaired establishment of apicobasolateral polarity and a loss of subsequent apical lumen formation. The aPKC activity is also required for bile canalicular (apical) elongation in mouse primary hepatocytes. The lateral membrane-associated proteins Lgl1 and Lgl2, major substrates of aPKC, seem to be dispensable for hepatocyte polarity establishment because Lgl-depleted HepG2 cells are able to form a single apical lumen in 3D culture. On the other hand, Lgl depletion leads to lateral invasion of aPKC, and overexpression of Lgl1 or Lgl2 prevents apical lumen formation, indicating that they maintain proper lateral integrity. Thus, hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC; Par3 cooperates with Cdc42 to recruit aPKC, which plays a crucial role in apical membrane development and regulation of the lateral maintainer Lgl.  相似文献   

2.
Wild-type (WT) and myosin heavy chain IIB null [MHCIIB (−/−)] embryonic fibroblasts were used as an experimental model to assess the role of the isoform B of myosin II (MII) in the regulation of the cell shape and intrinsic polarity. Genetic ablation of MHCIIB causes a persistent albeit, unstable protrusive activity in embryonic fibroblasts (Lo et al. in Nonmuscle myosin IIB is involved in the guidance of fibroblast migration. Mol Biol Cell 15:982–989, 2004). Here, we show that MHCIIB-deficient fibroblasts are characterized by a sustained guanine nucleotide exchange factor (GEF)-dependent activation of the small GTPase Rac-1 that is responsible for the continual lamellipodium formation. Moreover, we observed a sustained PKC-ζ activation and an increased association of cortactin with the plasma membrane in the MHCIIB (−/−) cells that were also dependent on GEF-mediated Rac-1 activation. Rac-1 activation and its downstream effects were induced in WT fibroblasts by inhibiting MII ATPase and crosslinking activities, suggesting that an altered actin-MII interaction favours Rac-1 activation, regardless of the MII isoform implicated. In addition, we found MIIB isoform-specific effects that were independent of Rac-1 activation. MHCIIA interacts with cortactin whereas MHCIIB does not. By contrast, MHCIIB interacts with Lgl1, a member of the Scribble/Dlg/Lgl polarity complex, whereas MHCIIA does not. MHCIIB (−/−) fibroblasts exhibited deregulated endogenous levels of the Par polarity complex members, Par3 and Par6. Together, the data show that MHCIIB deficiency causes imbalances in signalling pathways that are responsible for cell polarity determination. The results suggest that these pathways are targets of MIIB in the regulation of the cell’s shape and polarity.  相似文献   

3.
Kidney-derived Madin Darby canine kidney (MDCK) cells form lumina at their apices, and target luminal proteins to an intracellular vacuolar apical compartment (VAC) when prevented from polarizing. Hepatocytes, by contrast, organize their luminal surfaces (the bile canaliculi; BC) between their lateral membranes, and, when nonpolarized, they display an intracellular luminal compartment that is distinct from the VACs of MDCK cells. Overexpression of the serine/threonine kinase Par1b/EMK1/MARK2 induces BC-like lateral lumina and a hepatic-type intracellular luminal compartment in MDCK cells, suggesting a role for Par1b in the branching decision between kidney- and hepatic-type epithelial phenotypes. Here, we report that Par1b promotes lateral lumen polarity in MDCK cells independently of Ca(2+)-mediated cell-cell adhesion by inhibiting myosin II in a rho kinase-dependent manner. Polarization was inhibited by E-cadherin depletion but promoted by an adhesion-defective E-cadherin mutant. By contrast, apical surface formation in control MDCK cells required Ca(2+)-dependent cell-cell adhesion, but it occurred in the absence of E-cadherin. We propose that E-cadherin, when in an adhesion-incompetent state at the lateral domain, serves as targeting patch for the establishment of lateral luminal surfaces. E-cadherin depletion also reverted the hepatic-type intracellular luminal compartment in Par1b-MDCK cells to VACs characteristic of control MDCK cells, indicating a novel link between E-cadherin and luminal protein targeting.  相似文献   

4.
Isoforms of the polarity protein par6 have distinct functions   总被引:4,自引:0,他引:4  
PAR-6 is essential for asymmetric division of the Caenorhabditis elegans zygote. It is also critical for cell polarization in many other contexts throughout the Metazoa. The Par6 protein contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain, which mediate interactions with other polarity proteins such as Par3, Cdc42, Pals1, and Lgl. A family of mammalian Par6 isoforms (Par6A-D) has been described, but the significance of this diversification has been unclear. Here we demonstrate that Par6 family members localize differently when expressed in Madin-Darby canine kidney epithelial cells and have distinct effects on tight junction (TJ) assembly. Par6B localizes to the cytosol and inhibits TJ formation, but Par6A co-localizes predominantly with the TJ marker ZO-1 at cell-cell contacts and does not affect junctions. These functional differences correlate with differences in Pals1 binding; Par6B interacts strongly with Pals1, whereas Par6A binds weakly to Pals1 even in the presence of active Cdc42. Pals1 has a low affinity for the isolated CRIB-PDZ domain of Par6A, but analysis of chimeras showed that in addition Pals1 binding is blocked by an inhibitory property of the N terminus of Par6A. Unexpectedly, the localization of Par6A to cell-cell contacts is Cdc42-independent.  相似文献   

5.
The adherens junction (AJ) densely associated with actin filaments is a major cell-cell adhesion structure. To understand the importance of actin filament association in AJ formation, we first analyzed punctate AJs in NRK fibroblasts where one actin cable binds to one AJ structure unit. The accumulation of AJ components such as the cadherin/catenin complex and vinculin, as well as the formation of AJ-associated actin cables depended on Rho activity. Inhibitors for the Rho target, ROCK, which regulates myosin II activity, and for myosin II ATPase prevented the accumulation of AJ components, indicating that myosin II activity is more directly involved than Rho activity. Depletion of myosin II by RNAi showed similar results. The inhibition of myosin II activity in polarized epithelial MTD-1A cells affected the accumulation of vinculin to circumferential AJ (zonula adherens). Furthermore, correct zonula occludens (tight junction) formation along the apicobasal axis that requires cadherin activity was also impaired. Although MDCK cells which are often used as typical epithelial cells do not have a typical zonula adherens, punctate AJs formed dependently on myosin II activity by inducing wound closure in a MDCK cell sheet. These findings suggest that tension generated by actomyosin is essential for correct AJ assembly.  相似文献   

6.
The functional interaction of cells in the formation of tissues requires the establishment and maintenance of cell-cell contact by the junctional complex. However, little is known biochemically about the mechanism(s) that regulates junctional complex assembly. To address this problem, we have initiated a study of the regulation of assembly of one component of the junctional complex, the desmosome, during induction of cell-cell contact in cultures of Madin-Darby canine kidney epithelial cells. Here we have analyzed two major protein components of the desmosomal plaque, desmoplakins I (Mr of 250,000) and II (Mr of 215,000). Analysis of protein levels of desmoplakins I and II by immunoprecipitation with an antiserum that reacts specifically with an epitope common to both proteins revealed that desmoplakins I and II are synthesized and accumulate at steady state in a ratio of 3-4:1 (in the absence or presence of cell-cell contact). The kinetics of desmoplakins I and II stabilization and assembly were analyzed after partitioning of newly synthesized proteins into a soluble and insoluble protein fraction by extraction of whole cells in a Triton X-100 high salt buffer. In the absence of cell-cell contact, both the soluble and insoluble pools of desmoplakins I and II are unstable and are degraded rapidly (t1/2 approximately 8 h). Upon induction of cell-cell contact, the capacity of the insoluble pool increases approximately three-fold as a proportion of the soluble pool of newly synthesized desmoplakins I and II is titrated into the insoluble pool. The insoluble pool becomes relatively stable (t1/2 greater than 72 h), whereas proteins remaining in the soluble pool (approximately 25-40% of the total) are degraded rapidly (t1/2 approximately 8 h). Furthermore, we show that desmoplakins I and II can be recruited from this unstable soluble pool of protein to the stable insoluble pool upon induction of cell-cell contact 4 h after synthesis; significantly, the stabilization of this population of newly synthesized desmoplakins I and II is blocked by the addition of cycloheximide at the time of cell-cell contact, indicating that the coordinate synthesis of another protein(s) is required for protein stabilization.  相似文献   

7.
How epithelial cells subdivide their plasma membrane into an apical and a basolateral domain is largely unclear. In Drosophila embryos, epithelial cells are generated from a syncytium during cellularization. We show here that polarity is established shortly after cellularization when Par-6 and the atypical protein kinase C concentrate on the apical side of the newly formed cells. Apical localization of Par-6 requires its interaction with activated Cdc42 and dominant-active or dominant-negative Cdc42 disrupt epithelial polarity, suggesting that activation of this GTPase is crucial for the establishment of epithelial polarity. Maintenance of Par-6 localization requires the cytoskeletal protein Lgl. Genetic and biochemical experiments suggest that phosphorylation by aPKC inactivates Lgl on the apical side. On the basolateral side, Lgl is active and excludes Par-6 from the cell cortex, suggesting that complementary cortical domains are maintained by mutual inhibition of aPKC and Lgl on opposite sides of an epithelial cell.  相似文献   

8.
Epithelial cells display apical-basal polarity, and the apical surface is segregated from the basolateral membranes by a barrier called the tight junction (TJ). TJs are constructed from transmembrane proteins that form cell-cell contacts-claudins, occludin, and junctional adhesion molecule (JAM)-plus peripheral proteins such as ZO-1. The Par proteins (partitioning-defective) Par3 and Par6, plus atypical protein kinase C (aPKC) function in the formation or maintenance of TJs and more generally in metazoan cell polarity establishment. Par6 contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain and binds the small GTPase Cdc42. Here, we show that Par6 inhibits TJ assembly in MDCK II epithelial cells after their disruption by Ca(2+) depletion but does not inhibit adherens junction (AJ) formation. Transepithelial resistance and paracellular diffusion assays confirmed that assembly of functional TJs is delayed by Par6 overexpression. Strikingly, the isolated, N-terminal fragment of PKCzeta, which binds Par6, also inhibits TJ assembly. Activated Cdc42 can disrupt TJs, but neither a dominant-negative Cdc42 mutant nor the CRIB domain of gammaPAK (p21-activated kinase), which inhibits Cdc42 function, observably inhibit TJ formation. These results suggest that Cdc42 and Par6 negatively regulate TJ assembly in mammalian epithelial cells.  相似文献   

9.
Once adherens junctions (AJs) are formed between polarized epithelial cells they must be maintained because AJs are constantly remodeled in dynamic epithelia. AJ maintenance involves endocytosis and subsequent recycling of E-cadherin to a precise location along the basolateral membrane. In the Drosophila pupal eye epithelium, Rho1 GTPase regulates AJ remodeling through Drosophila E-cadherin (DE-cadherin) endocytosis by limiting Cdc42/Par6/aPKC complex activity. We demonstrate that Rho1 also influences AJ remodeling by regulating the formation of DE-cadherin–containing, Rab11-positive recycling endosomes in Drosophila postmitotic pupal eye epithelia. This effect of Rho1 is mediated through Rok-dependent, but not MLCK-dependent, stimulation of myosin II activity yet independent of its effects upon actin remodeling. Both Rho1 and pMLC localize on endosomal vesicles, suggesting that Rho1 might regulate the formation of recycling endosomes through localized myosin II activation. This work identifies spatially distinct functions for Rho1 in the regulation of DE-cadherin–containing vesicular trafficking during AJ remodeling in live epithelia.  相似文献   

10.
Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective invasion by cancer cells depends on decreasing actomyosin contractility at sites of cell-cell contact. When actomyosin is not downregulated at cell-cell contacts, migrating cells lose cohesion. We provide a molecular mechanism for this downregulation. Depletion of discoidin domain receptor 1 (DDR1) blocks collective cancer-cell invasion in a range of two-dimensional, three-dimensional and 'organotypic' models. DDR1 coordinates the Par3/Par6 cell-polarity complex through its carboxy terminus, binding PDZ domains in Par3 and Par6. The DDR1-Par3/Par6 complex controls the localization of RhoE to cell-cell contacts, where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin contactility at cell-cell contacts, a loss of cell-cell cohesion and defective collective cell invasion.  相似文献   

11.
Regulation of cell polarity is an important biological event that governs diverse cell functions such as localization of embryonic determinants and establishment of tissue and organ architecture. The Rho family GTPases and the polarity complex Par6/Par3/atypical protein kinase C (PKC) play a key role in the signaling pathway, but the molecules that regulate upstream signaling are still not known. Here we identified the guanine nucleotide exchange factor ECT2 as an activator of the polarity complex. ECT2 interacted with Par6 as well as Par3 and PKCzeta. Coexpression of Par6 and ECT2 efficiently activated Cdc42 in vivo. Overexpression of ECT2 also stimulated the PKCzeta activity, whereas dominant-negative ECT2 inhibited the increase in PKCzeta activity stimulated by Par6. ECT2 localization was detected at sites of cell-cell contact as well as in the nucleus of MDCK cells. The expression and localization of ECT2 were regulated by calcium, which is a critical regulator of cell-cell adhesion. Together, these results suggest that ECT2 regulates the polarity complex Par6/Par3/PKCzeta and possibly plays a role in epithelial cell polarity.  相似文献   

12.
Cell migration is a highly integrated, multistep process that plays an important role in physiological and pathological processes. The migrating cell is highly polarized, with complex regulatory pathways that integrate its component processes spatially and temporally.1 The Drosophila tumor suppressor, Lethal (2) giant larvae (Lgl), regulates apical-basal polarity in epithelia and asymmetric cell division.2 But little is known about the role of Lgl in establishing cell polarity in migrating cells. Recently, we showed that the mammalian Lgl1 interacts directly with non-muscle myosin IIA (NMIIA), inhibiting its ability to assemble into filaments in vitro.3 Lgl1 also regulates the cellular localization of NMIIA, the maturation of focal adhesions, and cell migration.3 We further showed that phosphorylation of Lgl1 by aPKCζ prevents its interaction with NMIIA and is important for Lgl1 and acto-NMII cytoskeleton cellular organization.4 Lgl is a critical downstream target of the Par6-aPKC cell polarity complex; we showed that Lgl1 forms two distinct complexes in vivo, Lgl1-NMIIA and Lgl1-Par6-aPKCζ in different cellular compartments.4 We further showed that aPKCζ and NMIIA compete to bind directly to Lgl1 through the same domain. These data provide new insights into the role of Lgl1, NMIIA, and Par6-aPKCζ in establishing front-rear polarity in migrating cells. In this commentary, I discuss the role of Lgl1 in the regulation of the acto-NMII cytoskeleton and its regulation by the Par6-aPKCζ polarity complex, and how Lgl1 activity may contribute to the establishment of front-rear polarity in migrating cells.  相似文献   

13.
We and others have shown that phosphatidylinositol 3-kinase (PI3K) is recruited to and activated by E-cadherin engagement. This PI3K activation is essential for adherens junction integrity and intestinal epithelial cell differentiation. Here we provide evidence that hDlg, the homolog of disc-large tumor suppressor, is another key regulator of adherens junction integrity and differentiation in mammalian epithelial cells. We report the following. 1) hDlg co-localizes with E-cadherin, but not with ZO-1, at the sites of cell-cell contact in intestinal epithelial cells. 2) Reduction of hDlg expression levels by RNA(i) in intestinal cells not only severely alters adherens junction integrity but also prevents the recruitment of p85/PI3K to E-cadherin-mediated cell-cell contact and inhibits sucrase-isomaltase gene expression. 3) PI3K and hDlg are associated with E-cadherin in a common macromolecular complex in living differentiating intestinal cells. 4) This interaction requires the association of hDlg with E-cadherin and with Src homology domain 2 domains of the p85/PI3K subunit. 5) Phosphorylation of hDlg on serine and threonine residues prevents its interaction with the p85 Src homology domain 2 in subconfluent cells, whereas phosphorylation of hDlg on tyrosine residues is essential. We conclude that hDlg may be a determinant in E-cadherin-mediated adhesion and signaling in mammalian epithelial cells.  相似文献   

14.
The serine/threonine kinase Par1b promotes cell-cell adhesion and determines the polarity of the luminal domain in epithelial cells. In this study, we demonstrate that Par1b also regulates cell-extracellular matrix (ECM) signaling in kidney-derived Madin-Darby canine kidney (MDCK) cells and identified the rho-guanosine triphosphatase adaptor and scaffolding protein IRSp53 as a Par1b substrate involved in this pathway. Par1b overexpression inhibits basal lamina formation, cell spreading, focal adhesion, stress fiber formation, and compaction, whereas Par1b depletion has the opposite effect. IRSp53 depletion mimics Par1b overexpression on cell-ECM signaling and lumen polarity but had no effect on adherens junction formation. Par1b directly phosphorylates IRSp53 on S366 in cell lysates and stimulates phosphorylation on S453/3/5 via an indirect mechanism. A Par1b phosphorylation-deficient IRSp53 mutant but not the wild-type protein efficiently rescues both the cell spreading and the lumen polarity defects in Par1b MDCK cells. Our data suggest a model in which Par1b phosphorylation prevents recruitment of IRSp53 effector proteins to its Src homology domain 3 by promoting 14-3-3 binding in the vicinity of that domain.  相似文献   

15.
Intestinal epithelial cell differentiation is a complex process in which many different signaling pathways are likely involved. An increase in the intracellular levels of cyclic AMP (cAMP) has been shown to inhibit enterocyte differentiation; however, the mechanisms through which cAMP/PKA signaling modulates differentiation of human intestinal epithelial cells are still not well understood. Herein, we report that: (1) treatment of Caco-2/15 cells with 8Br-cAMP repressed sucrase-isomaltase and villin protein expression and strongly attenuated morphological differentiation of enterocyte-like features in Caco-2/15 such as epithelial cell polarity and brush border formation; (2) treatment of confluent Caco-2/15 cells with 8Br-cAMP led to a strong decrease in F-actin localized at cell-cell contact sites along with a reduced amount of E-cadherin and catenins, but not of ZO-1, at cell-cell interfaces concomitant with a decreased association of these proteins with the actin cytoskeleton; (3) inhibition of PKA by H89 prevented disruption of adherens junctions by extracellular calcium depletion; (4) treatment of Caco-2/15 cells with 8Br-cAMP prevented the recruitment and activation of p85/PI-3K to E-cadherin-mediated cell-cell contacts, an important event in the assembly of adherens junctions and differentiation of these cells; (5) E-cadherin appears to be phosphorylated on serine in vivo in a PKA-dependent mechanism. Conclusion: Our studies show that cAMP/PKA signaling negatively regulates adherens junction integrity as well as morphological and functional differentiation of intestinal epithelial cells.  相似文献   

16.
BACKGROUND: Epithelial cells have apicobasal polarity and an asymmetric junctional complex that provides the bases for development and tissue maintenance. In both vertebrates and invertebrates, the evolutionarily conserved protein complex, PAR-6/aPKC/PAR-3, localizes to the subapical region and plays critical roles in the establishment of a junctional complex and cell polarity. In Drosophila, another set of proteins called tumor suppressors, such as Lgl, which localize separately to the basolateral membrane domain but genetically interact with the subapical proteins, also contribute to the establishment of cell polarity. However, how physically separated proteins interact remains to be clarified. RESULTS: We show that mammalian Lgl competes for PAR-3 in forming an independent complex with PAR-6/aPKC. During cell polarization, mLgl initially colocalizes with PAR-6/aPKC at the cell-cell contact region and is phosphorylated by aPKC, followed by segregation from apical PAR-6/aPKC to the basolateral membrane after cells are polarized. Overexpression studies establish that increased amounts of the mLgl/PAR-6/aPKC complex suppress the formation of epithelial junctions; this contrasts with the previous observation that the complex containing PAR-3 promotes it. CONCLUSIONS: These results indicate that PAR-6/aPKC selectively interacts with either mLgl or PAR-3 under the control of aPKC activity to regulate epithelial cell polarity.  相似文献   

17.
18.
Harb N  Archer TK  Sato N 《PloS one》2008,3(8):e3001

Background

Embryonic stem (ES) cells self-renew as coherent colonies in which cells maintain tight cell-cell contact. Although intercellular communications are essential to establish the basis of cell-specific identity, molecular mechanisms underlying intrinsic cell-cell interactions in ES cells at the signaling level remain underexplored.

Methodology/Principal Findings

Here we show that endogenous Rho signaling is required for the maintenance of cell-cell contacts in ES cells. siRNA-mediated loss of function experiments demonstrated that Rock, a major effector kinase downstream of Rho, played a key role in the formation of cell-cell junctional assemblies through regulation of myosin II by controlling a myosin light chain phosphatase. Chemical engineering of this signaling axis by a Rock-specific inhibitor revealed that cell-cell adhesion was reversibly controllable and dispensable for self-renewal of mouse ES cells as confirmed by chimera assay. Furthermore, a novel culture system combining a single synthetic matrix, defined medium, and the Rock inhibitor fully warranted human ES cell self-renewal independent of animal-derived matrices, tight cell contacts, or fibroblastic niche-forming cells as determined by teratoma formation assay.

Conclusions/Significance

These findings demonstrate an essential role of the Rho-Rock-Myosin signaling axis for the regulation of basic cell-cell communications in both mouse and human ES cells, and would contribute to advance in medically compatible xeno-free environments for human pluripotent stem cells.  相似文献   

19.
Spatiotemporal coordination of cell-cell adhesion involving lamellipodial interactions, cadherin engagement, and the lateral expansion of the contact is poorly understood. Using high-resolution live-cell imaging, biosensors, and small molecule inhibitors, we investigate how Rac1 and RhoA regulate actin dynamics during de novo contact formation between pairs of epithelial cells. Active Rac1, the Arp2/3 complex, and lamellipodia are initially localized to de novo contacts but rapidly diminish as E-cadherin accumulates; further rounds of activation and down-regulation of Rac1 and Arp2/3 occur at the contacting membrane periphery, and this cycle repeats as a restricted membrane zone that moves outward with the expanding contact. The cortical bundle of actin filaments dissolves beneath the expanding contacts, leaving actin bundles at the contact edges. RhoA and actomyosin contractility are activated at the contact edges and are required to drive expansion and completion of cell-cell adhesion. We show that zones of Rac1 and lamellipodia activity and of RhoA and actomyosin contractility are restricted to the periphery of contacting membranes and together drive initiation, expansion, and completion of cell-cell adhesion.  相似文献   

20.
Epithelial cysts are one of the fundamental architectures for mammalian organogenesis. Although in vitro studies using cultured epithelial cells have revealed proteins required for cyst formation, the mechanisms that orchestrate the functions of these proteins in vivo remain to be clarified. We show that the targeted disruption of the mouse Par3 gene results in midgestational embryonic lethality with defective epicardial development. The epicardium is mainly derived from epicardial cysts and essential for cardiomyocyte proliferation during cardiac morphogenesis. PAR3-deficient epicardial progenitor (EPP) cells do not form cell cysts and show defects in the establishment of apical cortical domains, but not in basolateral domains. In PAR3-deficient EPP cells, the localizations of aPKC, PAR6beta and ezrin to the apical cortical domains are disturbed. By contrast, ZO1 and alpha4/beta1 integrins normally localize to cell-cell junctions and basal domains, respectively. Our observations indicate that EPP cell cyst formation requires PAR3 to interpret the polarity cues from cell-cell and cell-extracellular matrix interactions so that each EPP cell establishes apical cortical domains. These results also provide a clear example of the proper organization of epithelial tissues through the regulation of individual cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号