共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNA-181 (miR-181) is a multifaceted miRNA that has been implicated in many cellular processes such as cell fate determination and cellular invasion. While miR-181 is often overexpressed in human tumors, a direct role for this miRNA in breast cancer progression has not yet been characterized. In this study, we found this miRNA to be regulated by both activin and TGFβ. While we found no effect of miR-181 modulation on activin/TGFβ-mediated tumor suppression, our data clearly indicate that miR-181 plays a critical and prominent role downstream of two growth factors, in mediating their pro-migratory and pro-invasive effects in breast cancer cells miR-181 acts as a metastamir in breast cancer. Thus, our findings define a novel role for miR-181 downstream of activin/TGFβ in regulating their tumor promoting functions. Having defined miR-181 as a critical regulator of tumor progression in vitro, our results thus, highlight miR-181 as an important potential therapeutic target in breast cancer. 相似文献
2.
3.
Keren Tazat Melissa Hector-Greene Gerard C. Blobe Yoav I. Henis 《Molecular biology of the cell》2015,26(19):3535-3545
Transforming growth factor-β (TGF-β) receptor oligomerization has important roles in signaling. Complex formation among type I and type II (TβRI and TβRII) TGF-β receptors is well characterized and is essential for signal transduction. However, studies on their interactions with the type III TGF-β coreceptor (TβRIII) in live cells and their effects on TGF-β signaling are lacking. Here we investigated the homomeric and heteromeric interactions of TβRIII with TβRI and TβRII in live cells by combining IgG-mediated patching/immobilization of a given TGF-β receptor with fluorescence recovery after photobleaching studies on the lateral diffusion of a coexpressed receptor. Our studies demonstrate that TβRIII homo-oligomerization is indirect and depends on its cytoplasmic domain interactions with scaffold proteins (mainly GIPC). We show that TβRII and TβRI bind independently to TβRIII, whereas TβRIII augments TβRI/TβRII association, suggesting that TβRI and TβRII bind to TβRIII simultaneously but not as a complex. TβRIII expression inhibited TGF-β–mediated Smad2/3 signaling in MDA-MB-231 cell lines, an effect that depended on the TβRIII cytoplasmic domain and did not require TβRIII ectodomain shedding. We propose that independent binding of TβRI and TβRII to TβRIII competes with TβRI/TβRII signaling complex formation, thus inhibiting TGF-β–mediated Smad signaling. 相似文献
4.
5.
Ephrins and Eph receptors have key roles in regulation of cell migration during development. We found that the RacGAP β2-chimaerin (chimerin) bound to EphA2 and EphA4 and inactivated Rac1 in response to ephrinA1 stimulation. EphA4 bound to β2-chimaerin through its kinase domain and promoted binding of Rac1 to β2-chimaerin. In addition, knockdown of endogenous β2-chimaerin blocked ephrinA1-induced suppression of cell migration. These results suggest that β2-chimaerin is activated by EphA receptors and mediates the EphA receptor-dependent regulation of cell migration.
Structured summary
MINT-7013428: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 2 (uniprotkb:Q80XD1-2) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013515: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with Rac1 (uniprotkb:P63001) by anti tag coimmunoprecipitation (MI:0007)MINT-7013410: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 1 (uniprotkb:Q80XD1-1) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013503: Chimaerin beta 1 (uniprotkb:Q80XD1-1) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013472: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) by anti tag coimmunoprecipitation (MI:0007)MINT-7013450: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) and Chimaerin beta 2 (uniprotkb:P52757-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7013491: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007) 相似文献6.
R Fernandez-Alonso M Martin-Lopez L Gonzalez-Cano S Garcia F Castrillo I Diez-Prieto A Fernandez-Corona M E Lorenzo-Marcos X Li L Claesson-Welsh M M Marques M C Marin 《Cell death and differentiation》2015,22(8):1287-1299
Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity.Vascular system formation is one of the earliest events during organogenesis.1 The original vascular plexus is established by vasculogenesis, through differentiation and assembly of mesodermal precursors.2 The angiogenesis process allows the formation of new blood vessels from the existing vasculature and is perturbed in many diseases, including cancer.3 Although efforts have been made to identify factors that control vascular development, the understanding of the molecular networks remains incomplete.The formation of new capillaries and the remodeling of preexisting blood vessels is linked by signal transduction pathways.4 The members of the p53 family (p53, p73 and p63) coordinate cell proliferation, migration and differentiation, and could act as regulators of vascular development. TP73 function in angiogenesis is quite controversial,5, 6, 7 and it has never been addressed using developmental models.TP73 has a dual nature that resides in the existence of TA and DNp73 variants. TAp73 is capable of transactivating p53 targets8, 9, 10 whereas DNp73 can act as p53 and TAp73 repressor.11, 12, 13
TP73 final outcome will depend upon the differential expression of the TA/DNp73 isoforms in each cellular context, as they can execute synergic, as well as antagonist, functions.TP73 role during development is emphasized by the p73-knockout mice (Trp73−/−, p73KO from now on) multiple growth defects.14 These mice, which lack all p73 isoforms, exhibit gastrointestinal and cranial hemorrhages,14 suggestive of vascular fragility. Furthermore, TAp73 directly regulates GATA-1,8 which is essential for endothelial and hematopoietic differentiation.15, 16 This compounded information led us to hypothesize that p73 could be implicated in the regulation of vasculogenesis/angiogenesis.Regulation of these processes involves a broad range of signaling molecules essential for vascular growth and stability,17 such as vascular endothelial growth factor (VEGF)18 and transforming growth factor-β (TGF-β).19 TGF-β operates as a rheostat that controls endothelial cell (EC) differentiation, having an inhibitory effect on EC migration and proliferation by the TGF-β/TGFRI (ALK5)/Smad2/3 pathway, while the TβRII–ALK5/ALK1 complex activates Smad1/5/8, ID1 expression and a pro-angiogenic state.20, 21, 22Regulation of the TGF-β and VEGF pathways by p53 family members has been documented.23, 24 However, p73''s function in these pathways during development remains largely unexplored. In this work, we have used mouse embryonic stem cells (mESC) and induced pluripotent stem cells (iPSCs) as models that recapitulate early vascular morphogenesis.25, 26, 27 ESC and iPSC form multi-cellular aggregates (embryoid bodies, EBs) that, under appropriate conditions, generate functional EC.28 mESC and iPSC differentiation capacity into ECs has been fully addressed.29, 30 We have also performed retinal vascularization analysis to assess vascular processes in vivo.31, 32We demonstrate that p73 deficiency perturbs density and stability of mouse retinal development by affecting VEGF and TGF-β signaling. Furthermore, p73 is necessary for the assembly of vascular structures under physiological conditions in mESC and iPSC. Moreover, DNp73 positively affects angiogenesis through regulation of the TGF-β pathway in human umbilical vein cells (HUVEC) and DNp73-overexpression results in enhanced angiogenic potential of B16-F10 melanoma cells. 相似文献
7.
8.
9.
10.
11.
Vrieling M Santema W Van Rhijn I Rutten V Koets A 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(2):578-584
In most species, γδ T cells preferentially reside in epithelial tissues like the skin. Lymph duct cannulation experiments in cattle revealed that bovine dermal γδ T cells are able to migrate from the skin to the draining lymph nodes via the afferent lymph. For αβ T cells, it is generally accepted that epithelial and mucosal tissue egress is regulated by expression of the CCR7 chemokine receptor. In this study, we tracked the migratory route of bovine lymph-derived γδ T cells and examined their CCR7 cell surface expression in several compartments along this route. Total lymph cells from afferent and efferent origin were labeled with PKH fluorescent dyes and injected into the bloodstream. PKH(+) cells already reappeared in the afferent lymph after 4 h. The vast majority of the PKH(+) cells retrieved from the afferent lymph were of the WC1(+) γδ T cell phenotype, proving that this PKH(+) γδ T cell subset is able to home to and subsequently exit the skin. PKH(+) γδ T cells from afferent and efferent lymph lack CCR7 surface expression and display high levels of CD62L compared with CD4 T cells, which do express CCR7. Skin homing receptors CCR4 and CCR10 in contrast were transcribed by both CD4 and γδ T cells. Our findings suggest that γδ T cell skin egress and migration into the peripheral lymphatics is CCR7-independent and possibly mediated by CD62L expression. 相似文献
12.
13.
TGFβ signalling in endothelial cells is important for angiogenesis in early embryonic development, but little is known about its role in early postnatal life. To address this we used a tamoxifen inducible Cre-LoxP strategy in neonatal mice to deplete the TypeII TGFβ receptor (Tgfbr2) specifically in endothelial cells. This resulted in multiple micro-haemorrhages, and glomeruloid-like vascular tufts throughout the cerebral cortices and hypothalamus of the brain as well as in retinal tissues. A detailed examination of the retinal defects in these mutants revealed that endothelial adherens and tight junctions were in place, pericytes were recruited and there was no failure of vascular smooth muscle differentiation. However, the deeper retinal plexus failed to form in these mutants and the angiogenic sprouts stalled in their progress towards the inner nuclear layer. Instead the leading endothelial cells formed glomerular tufts with associated smooth muscle cells. This evidence suggests that TGFβ signalling is not required for vessel maturation, but is essential for the organised migration of endothelial cells as they begin to enter the deeper layers of the retina. Thus, TGFβ signalling is essential in vascular endothelial cells for maintaining vascular integrity at the angiogenic front as it migrates into developing neural tissues in early postnatal life. 相似文献
14.
Alan M. Holmes Markella Ponticos Xu Shi-wen Christopher P. Denton David J. Abraham 《Journal of cell communication and signaling》2011,5(3):173-177
The ability of TGFβ1 to act as a potent pro-fibrotic mediator is well established, potently inducing the expression of fibrogenic genes including type I collagen (COL1A2) and CCN2. Previously we have shown elevated expression of the TGFβ accessory receptor, endoglin on Systemic Sclerosis (SSc) dermal fibroblasts. Here we sought to assess the cell surface expression of the TGFβ receptor complex on SSc dermal fibroblasts (SDF), and investigate their role in maintaining the elevated expression of CCN2. SDF exhibited elevated expression of the TGFβ accessory receptors betaglycan/TGFβRIII and endoglin, but not type I or type II receptors. To determine the effect of altered receptor repertoire on TGFβ responses, we investigated the effect of exogenous TGFβ on expression of two pro-fibrotic genes. SDF exhibited higher basal expression of COL1A2 and CCN2 compared to healthy controls. TGFβ induced a marked increase in the expression of these genes in normal dermal fibroblasts, whereas SDF exhibited only a modest increase. We next sought to determine if higher basal expression in SDF was a result of autocrine expression of TGFβ. Surprisingly basal expression was not affected by a pan-neutralizing TGFβ antibody. To explore if altered accessory receptor expression alone could account for these changes, we determined their effects on CCN2 promoter activity. Endoglin inhibited CCN2 promoter activity in response to TGFβ. TGFβRIII alone or in combination with endoglin was sufficient to enhance basal CCN2 promoter activity. Thus TGFβ accessory receptors may play a significant role in the altered expression of fibrogenic genes in SDF. 相似文献
15.
Pemberton PW Aboutwerat A Smith A Burrows PC McMahon RF Warnes TW 《Biochimica et biophysica acta》2004,1689(3):182-189
Autoimmune hepatitis (AIH) is a chronic liver disease of unknown aetiology characterized by circulating autoantibodies, hyperglobulinaemia and interface hepatitis. The mechanisms of progression from initial autoimmune attack to fibrosis and cirrhosis are unclear but oxidant stress may be involved. Markers of lipid peroxidation, antioxidant status, hepatic fibrogenesis and liver function were measured in blood and urine in 35 controls and in 33 patients with type-1 AIH; histology was assessed in 18 patients. In AIH, markers of lipid peroxidation were significantly elevated (8-isoprostane in both plasma and urine P < 0.001; plasma malondialdehyde P = 0.017). Total antioxidant capacity in protein-free serum and total glutathione in both whole blood and plasma were significantly reduced (P = 0.007, P = 0.037, P < 0.001, respectively). The antioxidants selenium, vitamin A and vitamin E were significantly decreased (P = 0.007, P < 0.001, P = 0.025, respectively); vitamin C was unchanged. Urinary 8-isoprostane correlated positively with interface hepatitis and necroinflammatory score and with hepatic fibrogenesis (type III procollagen peptide). Interface hepatitis correlated negatively with vitamin A and whole blood total glutathione. Oxidant stress, as reflected in blood and urine by a wide range of pro- and antioxidant markers, is a significant feature of AIH and provides a probable mechanism linking hepatic necroinflammation to fibrogenesis and disease progression. 相似文献
16.
Zieba A Pardali K Söderberg O Lindbom L Nyström E Moustakas A Heldin CH Landegren U 《Molecular & cellular proteomics : MCP》2012,11(7):M111.013482-M111.013482-9
Fundamental open questions in signal transduction remain concerning the sequence and distribution of molecular signaling events among individual cells. In this work, we have characterized the intercellular variability of transforming growth factor β-induced Smad interactions, providing essential information about TGF-β signaling and its dependence on the density of cell populations and the cell cycle phase. By employing the recently developed in situ proximity ligation assay, we investigated the dynamics of interactions and modifications of Smad proteins and their partners under native and physiological conditions. We analyzed the kinetics of assembly of Smad complexes and the influence of cellular environment and relation to mitosis. We report rapid kinetics of formation of Smad complexes, including native Smad2-Smad3-Smad4 trimeric complexes, in a manner influenced by the rate of proteasomal degradation of these proteins, and we found a striking cell to cell variation of signaling complexes. The single-cell analysis of TGF-β signaling in genetically unmodified cells revealed previously unknown aspects of regulation of this pathway, and it provided a basis for analysis of these signaling events to diagnose pathological perturbations in patient samples and to evaluate their susceptibility to drug treatment. 相似文献
17.
Sjölund J Boström AK Lindgren D Manna S Moustakas A Ljungberg B Johansson M Fredlund E Axelson H 《PloS one》2011,6(8):e23057
Background
Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC) is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown.Methodology/Principal Findings
We show that inhibition of endogenous Notch signaling modulates TGF-β dependent gene regulation in CCRCC cells. Analysis of gene expression data representing 176 CCRCCs showed that elevated TGF-β pathway activity correlated significantly with shortened disease specific survival (log-rank test, p = 0.006) and patients with metastatic disease showed a significantly elevated TGF-β signaling activity (two-sided Student''s t-test, p = 0.044). Inhibition of Notch signaling led to attenuation of both basal and TGF-β1 induced TGF-β signaling in CCRCC cells, including an extensive set of genes known to be involved in migration and invasion. Functional analyses revealed that Notch inhibition decreased the migratory and invasive capacity of CCRCC cells.Conclusion
An extensive cross-talk between the Notch and TGF-β signaling cascades is present in CCRCC and the functional properties of these two pathways are associated with the aggressiveness of this disease. 相似文献18.
Ayano Harata Takashi Matsuzaki Akio Nishikawa Setsunosuke Ihara 《In vitro cellular & developmental biology. Animal》2013,49(3):220-229
We have previously shown that the cell sorting process of animal pole cells (AC) and vegetal pole cells (VC) from Xenopus gastrulae is considered to involve two steps: concentrification and polarization. In this study, we addressed the question of what specified the spatial relationship of the AC and VC clusters during the process. First, we examined the inhibitory or facilitatory treatment for myosin 2 activity during each of the two steps. The aggregates treated with Y27632 or blebbistatin during the concentrification step showed a cluster random arrangement, suggesting the prevention of the cell sorting by inhibition of myosin 2. Meanwhile, the treatment with a Rac1 inhibitor, NSC23766, during the same step resulted in promotion of the fusion of the AC clusters and the progression of the cell sorting, presumably by an indirect activation of myosin 2. On the other hand, the treatments with any of the three drugs during the polarization step showed that the two clusters did not appose, and their array remained concentric. Thus, the modulation of cell contraction might be indispensable to each of the two steps. Next, the activin/nodal TGF-β signaling was perturbed by using a specific activin receptor-like kinase inhibitor, SB431542. The results revealed a bimodal participation of the activin/nodal TGF-β signaling, i.e., suppressive and promotive effects on the concentrification and the polarization, respectively. Thus, the present in vitro system, which permits not only the cell contraction-mediated cell sorting but also the TGF-β-directed mesodermal induction such as cartilage formation, may fairly reflect the embryogenesis in vivo. 相似文献
19.
20.
Hill CR Sanchez NS Love JD Arrieta JA Hong CC Brown CB Austin AF Barnett JV 《Cellular signalling》2012,24(5):1012-1022
Coronary vessel development depends on a subpopulation of epicardial cells that undergo epithelial to mesenchymal transformation (EMT) and invade the subepicardial space and myocardium. These cells form the smooth muscle of the vessels and fibroblasts, but the mechanisms that regulate these processes are poorly understood. Mice lacking the Type III Transforming Growth Factor β Receptor (TGFβR3) die by E14.5 due to failed coronary vessel development accompanied by reduced epicardial cell invasion. BMP2 signals via TGFβR3 emphasizing the importance of determining the relative contributions of the canonical BMP signaling pathway and TGFβR3-dependent signaling to BMP2 responsiveness. Here we examined the role of TGFβR3 in BMP2 signaling in epicardial cells. Whereas TGFβ induced loss of epithelial character and smooth muscle differentiation, BMP2 induced an ALK3-dependent loss of epithelial character and modestly inhibited TGFβ-stimulated differentiation. Tgfbr3(-/-) cells respond to BMP2 indicating that TGFβR3 is not required. However, Tgfbr3(-/-) cells show decreased invasion in response to BMP2 and overexpression of TGFβR3 in Tgfbr3(-/-) cells rescued invasion. Invasion was dependent on ALK5, ALK2, ALK3, and Smad4. Expression of TGFβR3 lacking the 3 C-terminal amino acids required to interact with the scaffolding protein GIPC (GAIP-interacting protein, C terminus) did not rescue. Knockdown of GIPC in Tgfbr3(+/+) or Tgfbr3(-/-) cells rescued with TGFβR3 decreased BMP2-stimulated invasion confirming a requirement for TGFβR3/GIPC interaction. Our results reveal the relative roles of TGFβR3-dependent and TGFβR3-independent signaling in the actions of BMP2 on epicardial cell behavior and demonstrate the critical role of TGFβR3 in mediating BMP2-stimulated invasion. 相似文献