首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decision-support systems (DSSs) do not make decisions, but aid decision making. They encompass a range of techniques from statistics (e.g., Bayesian statistics, classification and regression tree analysis), optimization (e.g., linear programming, simulated annealing), and a variety of simulation techniques and tools. All of them are models because they simplify and abstract reality. Relations between forest dynamics and ungulate herbivory are equally diverse, including influences on tree population dynamics, impacts on other components of biological diversity, and nutrient cycles. The complexity of these relations hinders easy analysis and encourages the use of DSSs to query ungulate-forest systems. Our broad purpose is to suggest ways of matching kinds of DSSs with the variety of questions. We first note the diversity of relations among ungulates and other forest components that stimulates questions about how best to manage forests and forest-dwelling organisms. Then we briefly review DSSs in the broad sense. We recognize that various goals encourage the search for answers and ways of communicating partial answers, and address these under the “purpose” of the DSS. We summarize linkages between questions, purposes, and models, and close by considering use of and errors in DSSs.  相似文献   

2.
Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substantial fraction of heritability, which hints at the low power of single variant analysis typically used in GWAS. Consequently, many multi-locus shrinkage models have been proposed under a Bayesian framework. However, most use Markov Chain Monte Carlo (MCMC) algorithm, which are time-consuming and challenging to apply to GWAS data. Here, we propose a fast algorithm of Bayesian adaptive lasso using variational inference (BAL-VI). Extensive simulations and real data analysis indicate that our model outperforms the well-known Bayesian lasso and Bayesian adaptive lasso models in accuracy and speed. BAL-VI can complete a simultaneous analysis of a lung cancer GWAS data with ~3400 subjects and ~570,000 SNPs in about half a day.  相似文献   

3.
Large-scale movement of organisms across their habitable range, or migration, is an important evolutionary process that can shape genetic diversity and influence the adaptive spread of alleles. Although human migrations have been studied in great detail with modern and ancient genomes, recent anthropogenic influence on reducing the biogeographical constraints on the migration of nonnative species has presented opportunities in several study systems to ask the questions about how repeated introductions shape genetic diversity in the introduced range. We present an extensive overview of population structure of North American Arabidopsis thaliana by studying a set of 500 whole-genome sequenced and over 2,800 RAD-seq genotyped individuals in the context of global diversity represented by Afro-Eurasian genomes. We use methods based on haplotype and rare-allele sharing as well as phylogenetic modeling to identify likely sources of introductions of extant N. American A. thaliana from the native range in Africa and Eurasia. We find evidence of admixture among the introduced lineages having increased haplotype diversity and reduced mutational load. We also detect signals of selection in immune-system-related genes that may impart qualitative disease resistance to pathogens of bacterial and oomycete origin. We conclude that multiple introductions to a nonnative range can rapidly enhance the adaptive potential of a colonizing species by increasing haplotypic diversity through admixture. Our results lay the foundation for further investigations into the functional significance of admixture.  相似文献   

4.
The study of evolutionary quantitative genetics has been advanced by the use of methods developed in animal and plant breeding. These methods have proved to be very useful, but they have some shortcomings when used in the study of wild populations and evolutionary questions. Problems arise from the small size of data sets typical of evolutionary studies, and the additional complexity of the questions asked by evolutionary biologists. Here, we advocate the use of Bayesian methods to overcome these and related problems. Bayesian methods naturally allow errors in parameter estimates to propagate through a model and can also be written as a graphical model, giving them an inherent flexibility. As packages for fitting Bayesian animal models are developed, we expect the application of Bayesian methods to evolutionary quantitative genetics to grow, particularly as genomic information becomes more and more associated with environmental data.  相似文献   

5.
The conservation of cultivated plants in ex-situ collections is essential for the optimal management and use of their genetic resources. For the olive tree, two world germplasm banks (OWGB) are presently established, in Córdoba (Spain) and Marrakech (Morocco). This latter was recently founded and includes 561 accessions from 14 Mediterranean countries. Using 12 nuclear microsatellites (SSRs) and three chloroplast DNA markers, this collection was characterised to examine the structure of the genetic diversity and propose a set of olive accessions encompassing the whole Mediterranean allelic diversity range. We identified 505 SSR profiles based on a total of 210 alleles. Based on these markers, the genetic diversity was similar to that of cultivars and wild olives which were previously characterised in another study indicating that OWGB Marrakech is representative of Mediterranean olive germplasm. Using a model-based Bayesian clustering method and principal components analysis, this OWGB was structured into three main gene pools corresponding to eastern, central and western parts of the Mediterranean Basin. We proposed 10 cores of 67 accessions capturing all detected alleles and 10 cores of 58 accessions capturing the 186 alleles observed more than once. In each of the 10 cores, a set of 40 accessions was identical, whereas the remaining accessions were different, indicating the need to include complementary criteria such as phenotypic adaptive and agronomic traits. Our study generated a molecular database for the entire OWGB Marrakech that may be used to optimise a strategy for the management of olive genetic resources and their use for subsequent genetic and genomic olive breeding.  相似文献   

6.
Simpson's “early burst” model of adaptive radiation was intended to explain the early proliferation of morphological and functional variation in diversifying clades. Yet, despite much empirical testing, questions remain regarding its frequency across the tree of life. Here, we evaluate the support for an early burst model of adaptive radiation in 14 ecomorphological traits plus body mass for the extant mammalian order Carnivora and its constituent families. We find strong support for early bursts of dental evolution, suggesting a classic Simpsonian adaptive radiation along dietary resource axes. However, the signal of this early burst is not consistently recovered in analyses at the family level, where support for a variety of different models emerges. Furthermore, we find no evidence for early burst–like dynamics in size–related traits, and Bayesian analyses of evolutionary correlations corroborate a decoupling of size and dental evolution, driven in part by dietary specialization. Our results are consistent with the perspective that trait diversification unfolds hierarchically, with early bursts restricted to traits associated with higher level niches, such as macrohabitat use or dietary strategy, and thus with the origins of higher taxa. The lack of support for early burst adaptive radiation in previous phylogenetic studies may be a consequence of focusing on low‐level niche traits (i.e., those associated with microhabitat use) in clades at shallow phylogenetic levels. A richer understanding of early burst adaptive radiation will require a renewed focus on functional traits and their evolution over higher level clades.  相似文献   

7.
Source Partitioning Using Stable Isotopes: Coping with Too Much Variation   总被引:2,自引:0,他引:2  

Background

Stable isotope analysis is increasingly being utilised across broad areas of ecology and biology. Key to much of this work is the use of mixing models to estimate the proportion of sources contributing to a mixture such as in diet estimation.

Methodology

By accurately reflecting natural variation and uncertainty to generate robust probability estimates of source proportions, the application of Bayesian methods to stable isotope mixing models promises to enable researchers to address an array of new questions, and approach current questions with greater insight and honesty.

Conclusions

We outline a framework that builds on recently published Bayesian isotopic mixing models and present a new open source R package, SIAR. The formulation in R will allow for continued and rapid development of this core model into an all-encompassing single analysis suite for stable isotope research.  相似文献   

8.
S Wilkinson  C Haley  L Alderson  P Wiener 《Heredity》2011,106(2):261-269
Recently developed Bayesian genotypic clustering methods for analysing genetic data offer a powerful tool to evaluate the genetic structure of domestic farm animal breeds. The unit of study with these approaches is the individual instead of the population. We aimed to empirically evaluate various individual-based population genetic statistical methods for characterization of genetic diversity and structure of livestock breeds. Eighteen British pig populations, comprising 819 individuals, were genotyped at 46 microsatellite markers. Three Bayesian genotypic clustering approaches, principle component analysis (PCA) and phylogenetic reconstruction were applied to individual multilocus genotypes to infer the genetic structure and diversity of the British pig breeds. Comparisons of the three Bayesian genotypic clustering methods (, and ) revealed some broad similarities but also some notable differences. Overall, the methods agreed that majority of the British pig breeds are independent genetic units with little evidence of admixture. The three Bayesian genotypic clustering methods provided complementary, biologically credible clustering solutions but at different levels of resolution. detected finer genetic differentiation and in some cases, populations within breeds. Consequently, it estimated a greater number of underlying genetic populations (K, in the notation of Bayesian clustering methods). Two of the Bayesian methods ( and ) and phylogenetic reconstruction provided similar success in assignment of individuals, supporting the use of these methods for breed assignment.  相似文献   

9.
The emergence of exceptionally diverse clades is often attributed to ecological opportunity. For example, the exceptional diversity in the most diverse superfamily of mammals, muroid rodents, has been explained in terms of multiple independent adaptive radiations. If multiple ecological opportunity events are responsible for generating muroid diversity, we expect to find evidence of these lineages ecologically diversifying following dispersal into new biogeographical areas. In the present study, we tested the trait‐based predictions of ecological opportunity using data on body size, appendages, and elevation in combination with previously published data on biogeographical transitions and a time‐calibrated molecular phylogeny. We identified weak to no support of early ecological diversification following the initial colonizations of all continental regions, based on multiple tests, including node height tests, disparity through time plots, evolutionary model comparison, and Bayesian analysis of macroevolutionary mixtures. Clades identified with increased diversification rates, not associated with geographical transitions, also did not show patterns of phenotypic divergence predicted by ecological opportunity, which suggests that phylogenetic diversity and phenotypic disparity may be decoupled in muroids. These results indicate that shifts in diversification rates and biogeographically‐mediated ecological opportunity are poor predictors of phenotypic diversity patterns in muroids.  相似文献   

10.
Targeted therapies on the basis of genomic aberrations analysis of the tumor have shown promising results in cancer prognosis and treatment. Regardless of tumor type, trials that match patients to targeted therapies for their particular genomic aberrations have become a mainstream direction of therapeutic management of patients with cancer. Therefore, finding the subpopulation of patients who can most benefit from an aberration‐specific targeted therapy across multiple cancer types is important. We propose an adaptive Bayesian clinical trial design for patient allocation and subpopulation identification. We start with a decision theoretic approach, including a utility function and a probability model across all possible subpopulation models. The main features of the proposed design and population finding methods are the use of a flexible nonparametric Bayesian survival regression based on a random covariate‐dependent partition of patients, and decisions based on a flexible utility function that reflects the requirement of the clinicians appropriately and realistically, and the adaptive allocation of patients to their superior treatments. Through extensive simulation studies, the new method is demonstrated to achieve desirable operating characteristics and compares favorably against the alternatives.  相似文献   

11.
The quest for adaptive evolution: a theoretical challenge in a maze of data   总被引:1,自引:0,他引:1  
Advances in sequencing technology have brought opportunities to refine our searches for adaptive evolution and to address and identify new questions regarding how adaptive evolution has shaped genomic diversity. Recent theoretical developments incorporate demographic and complex selective histories into tests of non-neutral evolution, thereby significantly improving our power to detect selection. These analyses combined with large data sets promise to identify targets of selection for which there was no a priori expectation. Moreover, they contribute to elucidate the role selection has played in shaping diversity in transposable elements, conserved noncoding DNA, gene family size, and other multicopy features of genomes.  相似文献   

12.
Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long‐term. We then reviewed the literature on quantitative trait diversity and found that broad‐sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a ‘mosaic of maladaptation’ where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.  相似文献   

13.
Grape diversity present in Morocco and the part of this diversity used nowadays are poorly documented. In order to choose diversified genotypes, to select them so that their agronomic interest will be tested, a group of 21 autochthonous cultivars preserved in the germplasm collections of SODEA and 18 Moroccan cultivars from “Domaine de Vassal” INRA grape collection was compared to a group of cultivars from neighbouring countries (Algeria and Tunisia), and from a core collection optimizing simple sequence repeat (SSR) allelic diversity of grape. Data from 20 nuclear and 3 chloroplastic SSR markers were obtained for this set of 211 cultivars. A total of 156 alleles (mean of 7.8 alleles per locus) were detected for the nSSRs and 7 alleles for the cpSSR in the Moroccan group. Chlorotype diversity in Moroccan and Algerian group were similar, but slightly lower than in the Tunisian group and the core collection. Similarly, the nSSR diversity was high in the core collection and low in the Moroccan and the Algerian groups compared to the two other groups. Clustering of cultivars based on nSSR data reflected their geographical origin and, to a certain extent, the use of the cultivars. The specificity of the Moroccan plant material was attested by the Bayesian analysis using Structure, while differences of the core collection were clearly revealed both by the Bayesian and a multivariate analysis. These results confirm the differentiation of the material from Maghreb and more specifically of Moroccan material, having evolved independently from Europe.  相似文献   

14.
Phylodynamics is an area of population genetics that uses genetic sequence data to estimate past population dynamics. Modern state-of-the-art Bayesian nonparametric methods for recovering population size trajectories of unknown form use either change-point models or Gaussian process priors. Change-point models suffer from computational issues when the number of change-points is unknown and needs to be estimated. Gaussian process-based methods lack local adaptivity and cannot accurately recover trajectories that exhibit features such as abrupt changes in trend or varying levels of smoothness. We propose a novel, locally adaptive approach to Bayesian nonparametric phylodynamic inference that has the flexibility to accommodate a large class of functional behaviors. Local adaptivity results from modeling the log-transformed effective population size a priori as a horseshoe Markov random field, a recently proposed statistical model that blends together the best properties of the change-point and Gaussian process modeling paradigms. We use simulated data to assess model performance, and find that our proposed method results in reduced bias and increased precision when compared to contemporary methods. We also use our models to reconstruct past changes in genetic diversity of human hepatitis C virus in Egypt and to estimate population size changes of ancient and modern steppe bison. These analyses show that our new method captures features of the population size trajectories that were missed by the state-of-the-art methods.  相似文献   

15.
Aim The salamander Ensatina eschscholtzii Gray is a classic example of a ring species, or a species that has expanded around a central barrier to form a secondary contact characterized by species‐level divergence. In the original formulation of the ring species scenario, an explicit biogeographical model was proposed to account for the occurrence of intraspecific sympatry between two subspecies in southern California (the ‘southern closure’ model). Here we develop an alternative ring species model that is informed by the geomorphological development of the California Coast Ranges, and which situates the point of ring closure in the Monterey Bay region of central coastal California (the ‘Monterey closure’ model). Our study has two aims. The first is to use phylogenetic methods to evaluate the two competing biogeographical models. The second is to describe patterns of phylogeographical diversity throughout the range of the Ensatina complex, and to compare these patterns with previously published molecular systematic data. Location Western North America, with a focus on the state of California, USA. Methods We obtained mitochondrial DNA sequence data from 385 individuals from 224 populations. A phylogeny was inferred using Bayesian techniques, and the geographical distributions of haplotypes and clades were mapped. The two biogeographical ring species models were tested against our Bayesian topology, including the associated Bayesian 95% credible set of trees. Results High levels of phylogeographical diversity were revealed, especially in central coastal and northern California. Our Bayesian topology contradicts the Monterey closure model; however, 0.08% of the trees in our Bayesian 95% credible set are consistent with this model. In contrast, the classic ring species biogeographical model (the southern closure model) is consistent with our Bayesian topology, as were 99.92% of the trees in our 95% credible set. Main conclusions Our Bayesian phylogenetic analysis most strongly supports the classic ring species model, modified to accommodate an improved understanding of the complex geomorphological evolution of the California Coast Ranges. In addition, high levels of phylogeographical diversity in central and northern California were identified, which is consistent with the striking levels of allozymic differentiation reported previously from those regions.  相似文献   

16.
Li Z  Sillanpää MJ 《Genetics》2012,190(1):231-249
Bayesian hierarchical shrinkage methods have been widely used for quantitative trait locus mapping. From the computational perspective, the application of the Markov chain Monte Carlo (MCMC) method is not optimal for high-dimensional problems such as the ones arising in epistatic analysis. Maximum a posteriori (MAP) estimation can be a faster alternative, but it usually produces only point estimates without providing any measures of uncertainty (i.e., interval estimates). The variational Bayes method, stemming from the mean field theory in theoretical physics, is regarded as a compromise between MAP and MCMC estimation, which can be efficiently computed and produces the uncertainty measures of the estimates. Furthermore, variational Bayes methods can be regarded as the extension of traditional expectation-maximization (EM) algorithms and can be applied to a broader class of Bayesian models. Thus, the use of variational Bayes algorithms based on three hierarchical shrinkage models including Bayesian adaptive shrinkage, Bayesian LASSO, and extended Bayesian LASSO is proposed here. These methods performed generally well and were found to be highly competitive with their MCMC counterparts in our example analyses. The use of posterior credible intervals and permutation tests are considered for decision making between quantitative trait loci (QTL) and non-QTL. The performance of the presented models is also compared with R/qtlbim and R/BhGLM packages, using a previously studied simulated public epistatic data set.  相似文献   

17.
We have used phylogeographic analysis of mitochondrial DNA (COI and COII genes) and ecological niche modelling (ENM) to reconstruct the population history of Argosarchus horridus (White), a widespread species of New Zealand stick insect. These data were used to address outstanding questions on the role of glacial refugia in determining the distribution and genetic structure of New Zealand species. Phylogeographic analysis shows a general pattern of high diversity in upper North Island and reduced diversity in lower North Island and South Island. The ENM indicates that during the last glacial maximum, A. horridus was largely restricted to refugia around coastal areas of North Island. The ENM also suggests refugia on the northeast coast of South Island and southeast coast of North Island and this prediction is verified by phylogeographic analysis, which shows a clade restricted to this region. Argosarchus horridus is also most likely a geographic parthenogen where males are much rarer at higher latitudes. The higher levels of genetic variation in northern, bisexual populations suggest southern and largely unisexual populations originated from southwardly expanding parthenogenetic lineages. Bayesian skyline analysis also provides support for a recent population size increase consistent with a large increase in geographic distribution in the late Pleistocene. These results exemplify the utility of integrating ENM and phylogeographic analysis in testing hypotheses on the origin of geographic parthenogenesis and effects of Pleistocene environmental change on biodiversity.  相似文献   

18.
Elucidation of the evolutionary processes that constrain or facilitate adaptive divergence is a central goal in evolutionary biology, especially in non-model organisms. We tested whether changes in dynamics of gene flow (historical vs contemporary) caused population isolation and examined local adaptation in response to environmental selective forces in fragmented Rhododendron oldhamii populations. Variation in 26 expressed sequence tag-simple sequence repeat loci from 18 populations in Taiwan was investigated by examining patterns of genetic diversity, inbreeding, geographic structure, recent bottlenecks, and historical and contemporary gene flow. Selection associated with environmental variables was also examined. Bayesian clustering analysis revealed four regional population groups of north, central, south and southeast with significant genetic differentiation. Historical bottlenecks beginning 9168–13,092 years ago and ending 1584–3504 years ago were revealed by estimates using approximate Bayesian computation for all four regional samples analyzed. Recent migration within and across geographic regions was limited. However, major dispersal sources were found within geographic regions. Altitudinal clines of allelic frequencies of environmentally associated positively selected outliers were found, indicating adaptive divergence. Our results point to a transition from historical population connectivity toward contemporary population isolation and divergence on a regional scale. Spatial and temporal dispersal differences may have resulted in regional population divergence and local adaptation associated with environmental variables, which may have played roles as selective forces at a regional scale.  相似文献   

19.
Amphipods are key organisms in many freshwater systems and contribute substantially to the diversity and functioning of macroinvertebrate communities. Furthermore, they are commonly used as bioindicators and for ecotoxicological tests. For many areas, however, diversity and distribution of amphipods is inadequately known, which limits their use in ecological and ecotoxicological studies and handicaps conservation initiatives. We studied the diversity and distribution of amphipods in Switzerland (Central Europe), covering four major drainage basins, an altitudinal gradient of>2,500 m, and various habitats (rivers, streams, lakes and groundwater). We provide the first provisional checklist and detailed information on the distribution and diversity of all amphipod species from Switzerland. In total, we found 29 amphipod species. This includes 16 native and 13 non-native species, one of the latter (Orchestia cavimana) reported here for the first time for Switzerland. The diversity is compared to neighboring countries. We specifically discuss species of the genus Niphargus, which are often receiving less attention. We also found evidence of an even higher level of hidden diversity, and the potential occurrence of further cryptic species. This diversity reflects the biogeographic past of Switzerland, and suggests that amphipods are ideally suited to address questions on endemism and adaptive radiations, post-glaciation re-colonization and invasion dynamics as well as biodiversity-ecosystem functioning relationships in aquatic systems.  相似文献   

20.
Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号