首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological detoxification of mycotoxins: a review   总被引:1,自引:0,他引:1  
Mycotoxins are secondary fungal metabolites and are reported to be carcinogenic, genotoxic, teratogenic, dermato-, nephro- and hepatotoxic. Several studies have shown that economic losses due to mycotoxins occur at all levels of food and feed production, including crop and animal production, processing and distribution. Therefore, there is a great demand for a novel approach to prevent both the formation of mycotoxins in food and feed and the impact of existing mycotoxin contamination. Recently, investigators have reported that many microorganisms including bacteria, yeast, moulds, actinomycetes and algae are able to remove or degrade mycotoxins in food and feed. We have reviewed various strategies for the detoxification of mycotoxins using microorganisms such as bacteria, yeast and fungi.  相似文献   

2.
The ability of lactic acid bacteria (LAB) to produce phenyllactic (PLA) and 4-hydroxy-phenyllactic (OH-PLA) acids, metabolites involved in food quality and preservation, has been evaluated by HPLC analysis in 29 LAB strains belonging to 12 species widely used in the production of fermented foods. Metabolite production was demonstrated for all strains of the species Lactobacillus plantarum, Lactobacillus alimentarius, Lactobacillus rhamnosus, Lactobacillus sanfranciscensis, Lactobacillus hilgardii, Leuconostoc citreum, and for some strains of Lactobacillus brevis, Lactobacillus acidophilus and Leuconostoc mesenteroides subsp. mesenteroides. Strains were distinguished by analysis of variance in three groups including 15 strains that produced both metabolites (0.16-0.46 mM PLA and 0.07-0.29 mM OH-PLA), five strains accumulating in culture only PLA (0.17-0.57 mM) and nine non-producer strains (< or = 0.10 mM PLA and < or = 0.02 mM OH-PLA). Improvement of phenyllactic acid production was obtained in a selected L. plantarum strain by increasing the concentration of phenylalanine in culture and using low amounts of tyrosine.  相似文献   

3.
AIMS: The aim of this study was to investigate extracellular matrix (ECM) and mucin binding of selected bacterial isolates with probiotic features in comparison with commercially used probiotic bacteria. METHODS AND RESULTS: ECM molecules were immobilized in microtitre plates (mucin and fetuin) or on the surface of latex beads. Porcine mucin was bound by all 13 probiotic strains tested with important inter-strain differences; however, fetuin binding was similar (weak) for all 14 strains tested. Strongly positive (three) binding of bovine fibrinogen was expressed by strains from fermented food (Lactobacillus rhamnosus GG, L. casei Shirota and L. johnsonii La1) as well as by L. casei L.c., Lactobacillus sp. 2I3 and by L. plantarum LP. The other strains expressed moderate (2) or weakly positive (1) binding of bovine fibrinogen. Strongly positive (3) binding of porcine fibronectin was observed only with two strains; however, all other strains also bound this molecule. Bovine lactoferrin was bound to a higher extent than transferrins. SIGNIFICANCE AND IMPACT OF THE STUDY: Some animal strains (at least L. casei L.c. and Lactobacillus sp. 2I3) are comparable with the commercially used strains with respect to their ECM binding ability. As this feature is important for probiotic bacteria to be able to colonize intestine, these strains should be considered for their wider use in fermented feed (or probiotic preparations) for animals.  相似文献   

4.
In addition to their fundamental role in nutrient recycling, saprobiotic microorganisms may be considered as typical consumers of food‐limited ephemeral resource patches. As such, they may be engaged in inter‐specific competition with saprophagous animals feeding from the same resource. Bacteria and filamentous fungi are known to synthesise secondary metabolites, some of which are toxic and have been proposed to deter or harm animals. The microorganisms may, however, also be negatively affected if saprophagous animals do not avoid microbe‐laden resources but feed in the presence of microbial competitors. We hypothesised that filamentous fungi compete with saprophagous insects, whereby secondary metabolites provide a chemical shield against the insect competitors. For testing this, we developed a new ecological model system representing a case of animal–microbe competition between saprobiotic organisms, comprising Drosophila melanogaster and species of the fungus Aspergillus (A. nidulans, A. fumigatus, A. flavus). Infestation of Drosophila breeding substrate with proliferating fungal colonies caused graduated larval mortality that strongly depended on mould species and colony age. Confrontation with conidiospores only, did not result in significant changes in larval survival, suggesting that insect death may not be ascribed to pathogenic effects. When confronted with colonies of transgenic fungi that lack the ability to express the global secondary metabolite regulator LaeA (ΔlaeA), larval mortality was significantly reduced compared to the impact of the wild type strains. Yet, also in the ΔlaeA strains, inter‐specific variation in the influence on insect growth occurred. Competition with Drosophila larvae impaired fungal growth, however, wild type colonies of A. nidulans and A. flavus recovered more rapidly from insect competition than the corresponding ΔlaeA mutants (not in A. fumigatus). Our findings provide genetic evidence that toxic secondary metabolites synthesised by saprotrophic fungi may serve as a means to combat insect competitors. Variation in the ability of LaeA to control expression of various secondary metabolite gene clusters might explain the observed species‐specific variation in DrosophilaAspergillus competition.  相似文献   

5.
The contamination of food and feed by Aspergillus has become a global issue with a significant worldwide economic impact. The growth of Aspergillus is unfavourable to the development of food and feed industries, where the problems happen mostly due to the presence of mycotoxins, which is a toxic metabolite secreted by most Aspergillus groups. Moreover, fungi can produce spores that cause diseases, such as allergies and asthma, especially to human beings. High temperature, high moisture, retarded crops, and poor food storage conditions encourage the growth of mold, as well as the development of mycotoxins. A variety of chemical, biological, and physical strategies have been developed to control the production of mycotoxins. A biological approach, using a mixed culture comprised of Saccharomyces cerevisiae and Lactobacillus rhamnosus resulted in the inhibition of the growth of fungi when inoculated into fermented food. The results reveal that the mixed culture has a higher potential (37.08%) to inhibit the growth of Aspergillus flavus (producer of Aflatoxin) compared to either single culture, L. rhamnosus NRRL B-442 and S. cerevisiae, which inhibit the growth by 63.07% and 64.24%, respectively.  相似文献   

6.
Aflatoxin production by Aspergillus parasiticus NRRL 2999 was inhibited when Ca2+ channel blockers, i.e., verapamil and diltiazem (> 1 mmol 1(-1)), were included in the culture medium. Inhibition was not accompanied by growth inhibition, nor was the [14C]-glucose uptake by the organism altered. However, both the compounds inhibited [14C]-acetate incorporation into aflatoxin B1 in a dose-dependent manner and decreased sporulation of the organism. Even though a nutritional role for Ca2+ has not been demonstrated unequivocally in fungi, the present study suggests the importance of Ca2+ in the production of these secondary metabolites.  相似文献   

7.
A strain-specific assay was developed for the detection of viable Lactobacillus on cattle feed. The DNA sequences of the 16S rRNA gene and four different 16S/23S rRNA intergenic spacer regions (ISR) from Lactobacillus sp. HOFG1 were determined. Based on these sequences, a strain-specific primer was designed for the amplification of one of the ISRs. When combined with a Lactobacillus group primer, the polymerase chain reaction (PCR) assay detected only Lactobacillus sp. HOFG1 and not other closely related L. animalis or L. murinus strains. The feed assay uses a combination of enrichment culturing and PCR to detect and enumerate viable Lactobacillus sp. HOFG1 after its application onto cattle feed. The high degree of primer specificity and use of selective culturing allows for the detection of viable Lactobacillus which is useful in tracking bacteria applied to complex feed mixtures that contain a high background of endogenous bacteria.  相似文献   

8.
Mycotoxins are a serious food safety concern for human and animal health. Much attention should be paid to the dietary exposure to mycotoxins in order to minimise the risk of mycotoxin contamination in the food chain. Among the reported strategies to manage the mycotoxin contamination into food and feed, biological control seems a promising approach, depending on their biological origins, and on the use of living organisms or their derivatives. Marine microorganisms have developed unique metabolic and physiological capabilities to thrive in extreme habitats and produce novel metabolites which are not often present in microbes of terrestrial origin. Some marine bacteria and fungi have a good potential for the control of fungal phytopathogens and mycotoxins. Biologists and chemists are needed to work together to explore the storehouse of marine microorganisms and marine active metabolites, because marine bacteria and fungi have a huge potential for practical application in biocontrol of fungal phytopathogens and preventing mycotoxin contamination.  相似文献   

9.
Mycotoxins are toxic secondary metabolites produced by a number of different fungi, and can be present in a wide range of food and feed commodities including cereal grains, oil seeds, dried fruits, apple juice, wine and meat products from animals fed contaminated meal. Many mycotoxins are highly resistant, and survive food processing, and therefore enter the food chain and provide a threat to human health. The optical waveguide lightmode spectroscopy (OWLS) technique has been applied to the detection of Aflatoxin and Ochratoxin in both competitive and in direct immunoassays. After immobilizing the antibody or antigen conjugate for the direct or indirect measurement, respectively, the sensor chip was used in flow-injection analyser (FIA) system. When using non-competitive method, sensor responses were obtained first only at analyte concentrations of 5-10 ng ml(-1). In both cases, the responses were very unstable. For competitive sensor investigation with the sensitized chip first the optimal dilution rate of monoclonal antibodies was determined, for the measurement of Ochratoxin A and Aflatoxin B1 the monoclonal antibody stock solution was diluted to 1 microg ml(-1) and to a 1:400 dilution, respectively. During the competitive measurement standard solutions were mixed with monoclonal antibodies at the appropriate concentration, the mixture was incubated for 1 min and injected into the OWLS system. The sensitive detection range of the competitive detection method was between 0.5 and 10 ng ml(-1) in both cases. After the establishment of the indirect method, barley and wheat flour samples were measured, and the results were in good correlation by those measured by enzyme linked immuno-sorbent assay (ELISA). Regression coefficient between the two methods for Ochratoxin and Aflatoxin was determined as 0.96 and 0.89, respectively.  相似文献   

10.
Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics.  相似文献   

11.
Lactobacillus fermentum strain L23 and L. rhamnosus strain L60 were selected as an alternative treatment to prevent or treat urogenital infections based on their probiotic properties and production of bacteriocins. The objectives of the present work were to study the inhibitory activities of these two bacteriocin-producing strains, and to analyze the interactions between pairs of bacteriocins that inhibit urogenital pathogens. Antimicrobial activity tests of L23 and L60 were performed by a diffusion method with 207 bacterial strains, isolated from female patients presenting a urogenital infection. Inhibitory substances interaction tests were carried out by using a streak-diffusion method on agar plates. One hundred percent of the clinical isolates showed sensitivity to the antimicrobial substances produced by L23 and L60. The selected lactobacilli produced larger inhibition halos when compared to several antibiotics commonly used for treating these infections. Synergistic interactions and indifferent interactions were recorded in 68.6% and 31.4% of the cases, respectively. No antagonistic interactions were observed. In conclusion, the bacteriocin-producing strains L23 and L60 are potential candidates for probiotic prophylaxis and treatment of urogenital disorders in women.  相似文献   

12.
A total of 52 strains of Lactobacillus acidophilus were examined for production of bacteriocins. A majority (63%) demonstrated inhibitory activity against all members of a four-species grouping of Lactobacillus leichmannii, Lactobacillus bulgaricus, Lactobacillus helveticus, and Lactobacillus lactis. Four L. acidophilus strains with this activity also inhibited Streptococcus faecalis and Lactobacillus fermentum, suggesting a second system of antagonism. Under conditions eliminating the effects of organic acids and hydrogen peroxide, no inhibition of other gram-positive or -negative genera was demonstrated by L. acidophilus. The agent produced by L. acidophilus N2 and responsible for inhibition of L. leichmannii, L. bulgaricus, L. helveticus, and L. lactis was investigated. Ultrafiltration studies indicated a molecular weight of approximately 100,000 for the crude inhibitor. The agent was sensitive to proteolytic enzymes and retained full activity after 60 min at 100 degrees C (pH 5). Activity against sensitive cells was bactericidal but not bacteriolytic. These characteristics identified the inhibitory agent as a bacteriocin, designated lactacin B. Examination of strains of L. acidophilus within the six homology groupings of Johnson et al. (Int. J. Syst. Bacteriol. 30:53-68, 1980) demonstrated that production of the bacteriocin lactacin B could not be used in classification of neotype L. acidophilus strains. However, the usefulness of employing sensitivity to lactacin B in classification of dairy lactobacilli is suggested.  相似文献   

13.
Fungal genomics revealed a large potential of yet-unexplored secondary metabolites, which are not produced during vegetative growth. The discovery of novel bioactive compounds is increasingly gaining importance. The high number of resistances against established antibiotics requires novel drugs to counteract increasing human and animal mortality rates. In addition, growth of plant pathogens has to be controlled to minimize harvest losses. An additional critical issue is the post-harvest production of deleterious mycotoxins. Fungal development and secondary metabolite production are linked processes. Therefore, molecular regulators of development might be suitable to discover new bioactive fungal molecules or to serve as targets to control fungal growth, development, or secondary metabolite production. The fungal impact is relevant as well for our healthcare systems as for agriculture. We propose here to use the knowledge about mutant strains discovered in fungal model systems for a broader application to detect and explore new fungal drugs or toxins. As examples, mutant strains impaired in two conserved eukaryotic regulatory complexes are discussed. The COP9 signalosome (CSN) and the velvet complex act at the interface between development and secondary metabolism. The CSN is a multi-protein complex of up to eight subunits and controls the activation of CULLIN-RING E3 ubiquitin ligases, which mark substrates with ubiquitin chains for protein degradation by the proteasome. The nuclear velvet complex consists of the velvet-domain proteins VeA and VelB and the putative methyltransferase LaeA acting as a global regulator for secondary metabolism. Defects in both complexes disturb fungal development, light perception, and the control of secondary metabolism. The potential biotechnological relevance of these developmental fungal mutant strains for drug discovery, agriculture, food safety, and human healthcare is discussed.  相似文献   

14.
The distribution of aflatoxin producing isolates of the Aspergillus flavus group in feeds was studied. Aflatoxin production was investigated by a sequential method previously reported (fluorescence in Coconut Agar Medium, rapid extraction from a wheat medium, and total extraction from the same wheat medium). Twenty-seven of 32 samples contained A. flavus, and 21 of them had at least one aflatoxicogenic isolate of A. flavus. Of the 115 isolates analysed, 65 produced aflatoxins, mainly B aflatoxins.  相似文献   

15.
Growing frequency of therapeutical failures of vulvovaginal candidiasis, resulting from resistance of certain species of Candida to imidazole agents, raises interest in the use of probiotics from Lactobacillus genera as prophylaxis. Unfortunately, little is known about inhibitory mechanisms of Lactobacillus on Candida. The aim of this study was to compare the activity of selected Lactobacillus species, representing the physiological vaginal flora, against Candida as well as investigation whether their inhibitory activity against Candida is related strictly to hydrogen peroxide and lactic acid production. 125 strains from vaginal smears of healthy women were classified by making use of phenotypic and genotypic methods. The majority of strains belonged to L. acidophilus: L. acidophilus sensu stricto, L. crispatus, L. gasseri and L. johnsonii as well as L. fermentum and L. plantarum species. Culture supernatants of selected 25 strains representing the isolated species were examined for their inhibitory activity against the growth of Candida albicans and C. glabrata. The results showed that the strongest and the fastest activity against C. albicans was demonstrated by L. delbrueckii strains, producing the largest quantities of hydrogen peroxide. On the other hand, extended activity, demonstrable after 24 hours, was shown by non-H2O2 producing L. plantarum supernatants. Growth of C. glabrata was not inhibited by any of the examined strains of Lactobacillus. Comparison of activity of live active cultures of Lactobacillus strains and their mixtures with this of pure H2O2 and lactic acid has shown that pure chemical compounds were less active than the cultures. This suggests that mixtures of Lactobacillus strains are in cooperation with each other using many different metabolites.  相似文献   

16.
Entomopathogenic fungi (EF), in particular the genus Metarhizium, have shown success in the control of insect pests. However, only a few have been commercialized mainly due to problems associated with the registration schedule, with emphasis on the lack of mandatory specific data requirements for the detection of secondary metabolites. In this study destruxin production for Metarhizium strains BIPESCO5, EAMa 01/58-Su, ARSEF 23 and ART 2825 was determined with an improved method of ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which has shown high precision in the detection and quantification of dtxs in four culture media (CM, MM, CN2 and OSM) representing different stress conditions. Every 3 days samples were taken for analysis over 18 days that allowed detecting 15 dtxs, with dtx A and B as the most abundant. However, very significant differences among strains in dtxs production were detected, and for each strain, dtxs production was highly dependent on culture medium, which highlights that the selection of a suitable medium for strain production for the risk assessment of secondary metabolites produced by EF is mandatory.  相似文献   

17.
During storage of moist animal feed, growth of detrimental fungi causing spoilage, or being mycotoxigenic or pathogenic, is a severe problem. Addition of biopreservative yeasts or lactic acid bacteria can significantly reduce this problem. However, their use requires several careful considerations. One is the safety to the animal, humans and the environment, tightly connected to legal aspects and the need for pre-market authorisation when supplementing feed with microorganisms. Although both yeasts and lactic acid bacteria are considered comparatively safe organisms due to low production of toxic metabolites, it is of great importance to understand the mechanisms behind the biopreservative abilities. Another important issue concerns practical aspects, such as the economic production of large amounts of the organisms and the development of a suitable formulation giving the organisms a long shelf life. These aspects are discussed and a recommendation of this review is that both safety and formulation aspects of a specific microbe should be considered at an early stage in the selection of new organisms with biopreservation potential.  相似文献   

18.
19.
为探究杜比亚蟑螂体内共生真菌种类,测定共生真菌次生代谢产物的抑菌活性和抗氧化活性,筛选出具有抗菌和抗氧化活性的菌株,本研究采用组织块分离法分离杜比亚蟑螂体内的共生真菌,通过形态学和分子生物学相结合的方法对分离到的共生真菌进行鉴定;分别采用薄层层析-生物自显影法和DPPH法测定共生真菌次生代谢产物的抗细菌活性和抗氧化活性。结果表明,从杜比亚蟑螂体内共分离鉴定得到5种不同的共生真菌,主要分布于青霉属(1株)、曲霉属(3株)和聚孢霉属(1株)。活性测定的结果表明,菌株Bdf-2、Bdf-4和Bdf-5表现出较好的抗菌活性,且菌液提取物的抗菌活性要强于菌丝。Bdf-1,Bdf-2和Bdf-3菌液次生代谢产物表现出抗氧化活性,IC 50值分别为0.26 mg/mL、2.20 mg/mL和0.75 mg/mL。杜比亚蟑螂共生真菌以青霉属和曲霉属为主,且具有抗菌和抗氧化活性的次生代谢产物主要分布于菌液中。  相似文献   

20.
陆晓东  王琦 《菌物研究》2010,8(2):103-106,114
以金黄色葡萄球菌、大肠杆菌、鼠伤沙门氏菌及大肠杆菌F为测试菌种,对从骆驼蓬(Peganum harmala L.)叶中分离出的14株内生真菌及其次生代谢产物进行了抗菌活性筛选。结果表明:8个菌株及10个菌株的代谢产物均至少对1种试验细菌具有抑菌活性,其中1株内生真菌及其次生代谢产物对测试病原细菌具有较强的抑菌作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号