首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human cytomegalovirus (HCMV) encodes multiple G protein-coupled receptor (GPCR) homologues, including pUS27, pUS28, pUL33, and pUL78. To explore the function of pUS27, we constructed pUS27-deficient derivates of two clinical isolates of HCMV. BFX-GFPstopUS27 is a FIX variant with a single base pair change in the US27 open reading frame, generating a stop codon that ablates accumulation of the GPCR homologue, and TB40/E-mCherrydlUS27 lacks the entire US27 coding region. BFX-GFPstopUS27 generated 10-fold less extracellular progeny in fibroblasts, and TB40/E-mCherrydlUS27 exhibited a similar defect in endothelial cells. The pUS27-deficient FIX derivative produced normal quantities of viral DNA and viral proteins tested, and a late virion protein was appropriately localized to the cytoplasmic assembly zone. After infection at a low multiplicity with wild-type FIX virus, neutralizing antibody reduced the accumulation of intracellular viral DNA and intracellular virions, as would be expected if the virus is limited to direct cell-to-cell spread by neutralization of extracellular virus. In contrast, the antibody had little effect on the spread of the BFX-GFPstopUS27 virus. Further, after infection at a low multiplicity, the pUS27-deficient TB40/E virus exhibited a growth defect in endothelial cells, where the clinical isolate normally generates extracellular virus, but the TB40/E derivative exhibited little defect in epithelial cells, where the wild-type virus does not produce extracellular virus. Thus, mutants lacking pUS27 rely primarily on direct cell-to-cell spread, and we conclude that the viral GCPR homologue acts at a late stage of the HCMV replication cycle to support spread of virus by the extracellular route.  相似文献   

3.
4.
The human cytomegalovirus (HCMV) major immediate-early (MIE) genes, encoding IE1 p72 and IE2 p86, are activated by a complex enhancer region (base positions -65 to -550) that operates in a cell type- and differentiation-dependent manner. The expression of MIE genes is required for HCMV replication. Previous studies analyzing functions of MIE promoter-enhancer segments suggest that the distal enhancer region variably modifies MIE promoter activity, depending on cell type, stimuli, or state of differentiation. To further understand the mechanism by which the MIE promoter is regulated, we constructed and analyzed several different recombinant HCMVs that lack the distal enhancer region (-300 to -582, -640, or -1108). In human fibroblasts, the HCMVs without the distal enhancer replicate normally at high multiplicity of infection (MOI) but replicate poorly at low MOI in comparison to wild-type virus (WT) or HCMVs that lack the neighboring upstream unique region and modulator (-582 or -640 to -1108). The growth aberrancy was normalized after restoring the distal enhancer in a virus lacking this region. For HCMVs without a distal enhancer, the impairment in replication at low MOI corresponds to a deficiency in production of MIE RNAs compared to WT or virus lacking the unique region and modulator. An underproduction of viral US3 RNA was also evident at low MOI. Whether lower production of IE1 p72 and IE2 p86 causes a reduction in expression of the immediate-early (IE) class US3 gene remains to be determined. We conclude that the MIE distal enhancer region possesses a mechanism for augmenting viral IE gene expression and genome replication at low MOI, but this regulatory function is unnecessary at high MOI.  相似文献   

5.
Human cytomegalovirus (HCMV) genome replication requires host DNA damage responses (DDRs) and raises the possibility that DNA repair pathways may influence viral replication. We report here that a nucleotide excision repair (NER)-associated-factor is required for efficient HCMV DNA replication. Mutations in genes encoding NER factors are associated with xeroderma pigmentosum (XP). One of the XP complementation groups, XPE, involves mutation in ddb2, which encodes DNA damage binding protein 2 (DDB2). Infectious progeny virus production was reduced by >2 logs in XPE fibroblasts compared to levels in normal fibroblasts. The levels of immediate early (IE) (IE2), early (E) (pp65), and early/late (E/L) (gB55) proteins were decreased in XPE cells. These replication defects were rescued by infection with a retrovirus expressing DDB2 cDNA. Similar patterns of reduced viral gene expression and progeny virus production were also observed in normal fibroblasts that were depleted for DDB2 by RNA interference (RNAi). Mature replication compartments (RCs) were nearly absent in XPE cells, and there were 1.5- to 2.0-log reductions in viral DNA loads in infected XPE cells relative to those in normal fibroblasts. The expression of viral genes (UL122, UL44, UL54, UL55, and UL84) affected by DDB2 status was also sensitive to a viral DNA replication inhibitor, phosphonoacetic acid (PAA), suggesting that DDB2 affects gene expression upstream of or events associated with the initiation of DNA replication. Finally, a novel, infection-associated feedback loop between DDB2 and ataxia telangiectasia mutated (ATM) was observed in infected cells. Together, these results demonstrate that DDB2 and a DDB2-ATM feedback loop influence HCMV replication.  相似文献   

6.
7.
Rhesus cytomegalovirus (RhCMV) is an emerging model for human cytomegalovirus (HCMV) pathogenesis that facilitates experimental CMV infection of a natural primate host closely related to humans. We have generated a library of RhCMV mutants with lesions in genes whose HCMV orthologues have been characterized as nonessential for replication in human fibroblasts, and we characterized their replication in rhesus fibroblasts and epithelial cells. The RhCMV mutants grew well in fibroblasts, as predicted by earlier studies with HCMV. However, mutations in four genes caused replication defects in rhesus retinal pigment epithelial cells: Rh01 (an HCMV TRL1 orthologue), Rh159 (HCMV UL148), Rh160 (HCMV UL132), and Rh203 (HCMV US22). Growth of the Rh01-deficient mutant was examined in detail. After entry into epithelial cells, the mutant expressed representative viral proteins, accumulated viral DNA, and generated infectious virus, but it failed to spread efficiently. We conclude that Rh01 is a cell tropism determinant that has the potential to dramatically affect virus spread and pathogenesis.  相似文献   

8.
In recent studies, the nuclear domain 10 (ND10) components PML and hDaxx were identified as cellular restriction factors that inhibit the initiation of human cytomegalovirus (HCMV) replication. The antiviral function of ND10, however, is antagonized by the IE1 protein, which induces ND10 disruption. Here we show that IE1 not only de-SUMOylates PML immediately upon infection but also directly targets Sp100. IE1 expression alone was sufficient to downregulate endogenous Sp100 independently of the presence of PML. Moreover, cotransfection experiments revealed that IE1 negatively interferes with the SUMOylation of all Sp100 isoforms. The modulation of Sp100 at immediate-early (IE) times of infection, indeed, seemed to have an in vivo relevance for HCMV replication, since knockdown of Sp100 resulted in more cells initiating the viral gene expression program. In addition, we observed that Sp100 was degraded in a proteasome-dependent manner at late times postinfection, suggesting that Sp100 may play an additional antiviral role during the late phase. Infection experiments conducted with Sp100 knockdown human foreskin fibroblasts (HFFs) confirmed this hypothesis: depletion of Sp100 resulted in augmented release of progeny virus particles compared to that from control cells. Consistent with this observation, we noted increased amounts of viral late gene products in the absence of Sp100. Importantly, this elevated late gene expression was not dependent on enhanced viral IE gene expression. Taken together, our data provide evidence that Sp100 is the first ND10-related factor identified that not only possesses the potential to restrict the initial stage of infection but also inhibits HCMV replication during the late phase.  相似文献   

9.
Primary human embryo lung fibroblasts and adult diploid fibroblasts infected by the human cytomegalovirus (HCMV) display beta-galactosidase (beta-Gal) activity at neutral pH (senescence-associated beta-Gal [SA-beta-Gal] activity) and overexpression of the plasminogen activator inhibitor type 1 (PAI-1) gene, two widely recognized markers of the process designated premature cell senescence. This activity is higher when cells are serum starved for 48 h before infection, a process that speeds and facilitates HCMV infection but that is insufficient by itself to induce senescence. Fibroblasts infected by HCMV do not incorporate bromodeoxyuridine, a prerequisite for the formal definition of senescence. At the molecular level, cells infected by HCMV, beside the accumulation of large amounts of the cell cycle regulators p53 and pRb, the latter in its hyperphosphorylated form, display a strong induction of the cyclin-dependent kinase inhibitor (cdki) p16(INK4a), a direct effector of the senescence phenotype in fibroblasts, and a decrease of the cdki p21(CIP1/WAF). Finally, a replicative senescence state in the early phases of infection significantly increased the number of cells permissive to virus infection and enhanced HCMV replication. HCMV infection assays carried out in the presence of phosphonoformic acid, which inhibits the virus DNA polymerase and the expression of downstream genes, indicated that immediate-early and/or early (alpha) genes are sufficient for the induction of SA-beta-Gal activity. When baculovirus vectors expressing HCMV IE1-72 or IE2-86 proteins were inoculated into fibroblasts, the increase of p16(INK4a) (observed predominantly with IE2-86) was similar to that observed with the whole virus, as was the induction of SA-beta-Gal activity, suggesting that the viral IE2 gene leads infected cells into senescence. Altogether our results demonstrate for the first time that HCMV, after arresting the cell cycle and inhibiting apoptosis, triggers the cellular senescence program, probably through the p16(INK4a) and p53 pathways.  相似文献   

10.
11.
Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection in the United States and Europe. Despite the significant morbidity associated with prenatal HCMV infection, little is known about how the virus infects the fetus during pregnancy. To date, primary human cytotrophoblasts (CTBs) have been utilized to study placental HCMV infection and replication; however, the minimal mitotic potential of these cells restricts experimentation to a few days, which may be problematic for mechanistic studies of the slow-replicating virus. The aim of this study was to determine whether the human first trimester CTB cell line SGHPL-4 was permissive for HCMV infection and therefore could overcome such limitations. HCMV immediate early (IE) protein expression was detected as early as 3 hours post-infection in SGHPL-4 cells and progressively increased as a function of time. HCMV growth assays revealed the presence of infectious virus in both cell lysates and culture supernatants, indicating that viral replication and the release of progeny virus occurred. Compared to human fibroblasts, viral replication was delayed in CTBs, consistent with previous studies reporting delayed viral kinetics in HCMV-infected primary CTBs. These results indicate that SGHPL-4 cells are fully permissive for the complete HCMV replicative cycle. Our findings suggest that these cells may serve as useful tools for future mechanistic studies of HCMV pathogenesis during early pregnancy.  相似文献   

12.
Herpes simplex virus type 1 (HSV-1) mutants defective in immediate-early (IE) gene expression do not readily enter productive replication after infection of tissue culture cells. Instead, their genomes are retained in a quiescent, nonreplicating state in which the production of viral gene products cannot be detected. To investigate the block to virus replication, we used the HSV-1 triple mutant in1820K, which, under appropriate conditions, is effectively devoid of the transactivators VP16 (a virion protein), ICP0, and ICP4 (both IE proteins). Promoters for the HSV-1 IE ICP0 gene or the human cytomegalovirus (HCMV) major IE gene, cloned upstream of the Escherichia coli lacZ coding sequences, were introduced into the in1820K genome. The regulation of these promoters and of the endogenous HSV-1 IE promoters was investigated upon conversion of the virus to a quiescent state. Within 24 h of infection, the ICP0 promoter became much less sensitive to transactivation by VP16 whereas the same element, when used to transform Vero cells, retained its responsiveness. The HCMV IE promoter, which is not activated by VP16, also became less sensitive to the HCMV functional homolog of VP16. Both elements remained available for transactivation by HSV-1 IE proteins at 24 h postinfection, showing that the in1820K genome was not irreversibly inactivated. The promoters controlling the HSV-1 ICP4, ICP22, and ICP27 genes also became essentially unresponsive to transactivation by VP16. The ICP0 promoter was induced when hexamethylene bisacetamide was added to cultures at the time of infection, but the response to this agent was also lost by 24 h after infection. Therefore, promoter elements within the HSV-1 genome are actively repressed in the absence of IE gene expression, and repression is not restricted specifically to HSV-1 IE promoters.  相似文献   

13.
Three tegument proteins of human cytomegalovirus (HCMV), ppUL82 (pp71), pUL69, and ppUL83 (pp65), were examined for the ability to stimulate the production of infectious virus from human diploid fibroblasts transfected with viral DNA. Although viral DNA alone had a low intrinsic infectivity of 3 to 8 plaques/microg of viral DNA, cotransfection of a plasmid expressing pp71 increased the infectivity of HCMV DNA 30- to 80-fold. The increase in infectivity produced by pp71 was reflected in an increased number of nuclei observed to express high levels of the major immediate-early proteins IE1 and IE2. Cotransfection of viral DNA with plasmids directing expression of IE1 and IE2 also resulted in extensive IE1 and IE2 expression in the transfected cells; however, the infectivity of viral DNA was only marginally increased. pp71 also facilitated late gene expression, virus transmission to adjacent cells, and plaque formation. In contrast, expression of pUL69 reduced the pp71- and IE1/IE2-mediated enhancement of HCMV DNA infectivity and also failed to produce any increase in the number of cells expressing IE1 and IE2 over that seen with viral DNA alone. Expression of pp65 did not alter the infectivity of HCMV DNA, nor did it modify the effects of pp71 or pUL69. These results imply that pp71 plays a critical role in the initiation of infection apart from its function as a transactivator of IE1 and IE2.  相似文献   

14.
In addition to productive lytic infections, herpesviruses such as human cytomegalovirus (HCMV) establish a reservoir of latently infected cells that permit lifelong colonization of the host. When latency is established, the viral immediate-early (IE) genes that initiate the lytic replication cycle are not expressed. HCMV IE gene expression at the start of a lytic infection is facilitated by the viral pp71 protein, which is delivered to cells by infectious viral particles. pp71 neutralizes the Daxx-mediated cellular intrinsic immune defense that silences IE gene expression by generating a repressive chromatin structure on the viral major IE promoter (MIEP). In naturally latently infected cells and in cells latently infected in vitro, the MIEP also adopts a similar silenced chromatin structure. Here we analyze the role of Daxx in quiescent HCMV infections in vitro that mimic some, but not all, of the characteristics of natural latency. We show that in these "latent-like" infections, the Daxx-mediated defense that represses viral gene expression is not disabled because pp71 and Daxx localize to different cellular compartments. We demonstrate that Daxx is required to establish quiescent HCMV infections in vitro because in cells that would normally foster the establishment of these latent-like infections, the loss of Daxx causes the lytic replication cycle to be initiated. Importantly, the lytic cycle is inefficiently completed, which results in an abortive infection. Our work demonstrates that, in certain cell types, HCMV must silence its own gene expression to establish quiescence and prevent abortive infection and that the virus usurps a Daxx-mediated cellular intrinsic immune defense mechanism to do so. This identifies Daxx as one of the likely multiple viral and cellular determinants in the pathway of HCMV quiescence in vitro, and perhaps in natural latent infections as well.  相似文献   

15.
To develop a gene therapeutic method for human cytomegalovirus (HCMV), the IE86 specific short hairpin (sh) RNA expressing vector was constructed and subsequently transfected into MRC-5 cells. After infection of these cells with HCMV AD169, expression of IE86 was reduced strikingly as compared to the control. In addition, the inhibitory effect corresponded to a decrease in viral DNA replication and the virus-induced cytopathic effect. Measurement of the virus yield demonstrated that infection of cells expressing IE86-specific shRNA resulted in suppression of the formation of infectious viral progeny. These observations indicate that IE86 can be used as an effective target against HCMV infection using RNA interference (RNAi) technology, which provides new possibilities for anti-HCMV studies.  相似文献   

16.
The in vivo persistence of gene-modified cells may be limited by the development of a host immune response to vector-encoded proteins. Herpesviruses evade cytotoxic T-lymphocyte (CTL) recognition by expressing genes which interfere selectively with presentation of viral antigens by class I major histocompatibility complex (MHC) molecules. Here, we studied the use of retroviral vectors encoding herpes simplex virus ICP47, human cytomegalovirus (HCMV) US3, or HCMV US11 to decrease presentation of viral proteins and transgene products to CD8(+) CTL. Human fibroblasts and T cells transduced to express the ICP47, US3, or US11 genes alone exhibited a decrease in cell surface class I MHC expression. The combination of ICP47 and US11 rendered fibroblasts negative for surface class I MHC and allowed a class I MHC-low population of T cells to be sorted by flow cytometry. Fibroblasts and T cells expressing both ICP47 and US11 were protected from CTL-mediated lysis and failed to stimulate specific memory T-cell responses to transgene products in vitro. Our findings suggest that expression of immunoregulatory viral gene products could be a potential strategy to prolong transgene expression in vivo.  相似文献   

17.
Human cytomegalovirus (HCMV) infection directly initiates a signal transduction pathway that leads to activation of a large number of cellular interferon-stimulated genes (ISGs). Our previous studies demonstrated that two interferon response elements, the interferon-stimulated response element and gamma interferon-activated site (GAS), in the ISG promoters serve as HCMV response sites (VRS). Interestingly, two GAS-like VRS elements (VRS1) were also present in the HCMV major immediate-early promoter-enhancer (MIEP/E). In this study, the importance of these VRS elements in viral replication was investigated. We demonstrate that the expression of the major IE genes, IE1 and IE2, is interferon inducible. To understand the biological significance of this signal transduction pathway in HCMV major IE expression, the two VRS1 in the MIEP/E were mutated. Mutant HCMVs in which the VRS elements were deleted or that contained point mutations grew dramatically more slowly than wild-type virus at a low multiplicity of infection (MOI). Insertion of wild-type VRS1 into the mutant viral genome rescued the slow growth phenotype. Furthermore, the expression levels of major IE RNAs and proteins were greatly reduced during infection with the VRS mutants at a low MOI. HCMV microarray analysis indicated that infection of host cells with the VRS mutant virus resulted in a global reduction in the expression of viral genes. Collectively, these data demonstrate that the two VRS elements in the MIEP/E are necessary for efficient viral gene expression and replication. This study suggests that although the HCMV-initiated signal transduction pathway results in induction of cellular antiviral genes, it also functions to stimulate viral major IE gene expression. This might be a new viral strategy in which the pathway is used to regulate gene expression and play a role in reactivation.  相似文献   

18.
19.
A cDNA encoding the catalytic subunit of human telomerase was used to generate life-extended derivatives of primary human diploid fibroblasts. The life-extended cells supported efficient human cytomegalovirus (HCMV) replication. A subclone of the life-extended cells was generated containing the HCMV UL82 gene and used to isolate and propagate a virus that exhibited a profound growth defect after infection at a low input multiplicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号