首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Macrophages are essential in atherosclerosis progression, but regulation of the M1 versus M2 phenotype and their role in cholesterol deposition are unclear. We demonstrate that endoplasmic reticulum (ER) stress is a key regulator of macrophage differentiation and cholesterol deposition. Macrophages from diabetic patients were classically or alternatively stimulated and then exposed to oxidized LDL. Alternative stimulation into M2 macrophages lead to increased foam cell formation by inducing scavenger receptor CD36 and SR-A1 expression. ER stress induced by alternative stimulation was necessary to generate the M2 phenotype through JNK activation and increased PPARγ expression. The absence of CD36 or SR-A1 signaling independently of modified cholesterol uptake decreased ER stress and prevented the M2 differentiation typically induced by alternative stimulation. Moreover, suppression of ER stress shifted differentiated M2 macrophages toward an M1 phenotype and subsequently suppressed foam cell formation by increasing HDL- and apoA-1-induced cholesterol efflux indicating suppression of macrophage ER stress as a potential therapy for atherosclerosis.  相似文献   

2.
Foam cell formation due to excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis. Macrophages cannot limit the uptake of cholesterol and therefore depend on cholesterol efflux pathways for preventing their transformation into foam cells. Several ABC-transporters, including ABCA1 and ABCG1, facilitate the efflux of cholesterol from macrophages. These transporters, however, also affect membrane lipid asymmetry which may have important implications for cellular endocytotic pathways. We propose that in addition to the generally accepted role of these ABC-transporters in the prevention of foam cell formation by induction of cholesterol efflux from macrophages, they also influence the macrophage endocytotic uptake.  相似文献   

3.
The impact of dietary fatty acids in atherosclerosis development may be partially attributed to their effect on macrophage cholesterol homeostasis. This process is the result of interplay between cholesterol uptake and efflux, which are permeated by inflammation and oxidative stress. Although saturated fatty acids (SAFAs) do not influence cholesterol efflux, they trigger endoplasmic reticulum stress, which culminates in increased lectin-like oxidized LDL (oxLDL) receptor (LOX1) expression and, consequently, oxLDL uptake, leading to apoptosis. Unsaturated fatty acids prevent most SAFAs-mediated deleterious effects and are generally associated with reduced cholesterol efflux, although α-linolenic acid increases cholesterol export. Trans fatty acids increase macrophage cholesterol content by reducing ABCA-1 expression, leading to strong atherosclerotic plaque formation. As isomers of conjugated linoleic acid (CLAs) are strong PPAR gamma ligands, they induce cluster of differentiation (CD36) expression, increasing intracellular cholesterol content. Considering the multiple effects of fatty acids on intracellular signaling pathways, the purpose of this review is to address the role of dietary fat in several mechanisms that control macrophage lipid content, which can determine the fate of atherosclerotic lesions.  相似文献   

4.
Diabetes and insulin resistance increase the risk of cardiovascular disease caused by atherosclerosis through mechanisms that are poorly understood. Lipid-loaded macrophages are key contributors to all stages of atherosclerosis. We have recently shown that diabetes associated with increased plasma lipids reduces cholesterol efflux and levels of the reverse cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) in mouse macrophages, which likely contributes to macrophage lipid accumulation in diabetes. Furthermore, we and others have shown that unsaturated fatty acids reduce ABCA1-mediated cholesterol efflux, and that this effect is mediated by the acyl-CoA derivatives of the fatty acids. We therefore investigated whether acyl-CoA synthetase 1 (ACSL1), a key enzyme mediating acyl-CoA synthesis in macrophages, could directly influence ABCA1 levels and cholesterol efflux in these cells. Mouse macrophages deficient in ACSL1 exhibited reduced sensitivity to oleate- and linoleate-mediated ABCA1 degradation, which resulted in increased ABCA1 levels and increased apolipoprotein A-I-dependent cholesterol efflux in the presence of these fatty acids, as compared with wildtype mouse macrophages. Conversely, overexpression of ACSL1 resulted in reduced ABCA1 levels and reduced cholesterol efflux in the presence of unsaturated fatty acids. Thus, the reduced ABCA1 and cholesterol efflux in macrophages subjected to conditions of diabetes and elevated fatty load may, at least in part, be mediated by ACSL1. These observations raise the possibility that ABCA1 levels could be increased by inhibition of acyl-CoA synthetase activity in vivo. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

5.
Impaired cellular cholesterol efflux in cells of the arterial wall is suggested to be involved in the pathogenesis of atherosclerosis. Since angiotensin II (Ang-II) is implicated in the development of atherosclerosis, the aim of the present study was to determine whether Ang-II could affect macrophage cholesterol efflux. Incubation of increasing concentrations of Ang-II (10(-10)-10(-7) M) with mouse peritoneal macrophages that were prelabeled with [3H]cholesterol led to a significant decrease in HDL-induced macrophage cholesterol efflux, by up to 70% compared to control cells incubated without Ang-II. Ang-II specifically increased the plasma membrane unesterified cholesterol content, the substrate for HDL-induced cholesterol efflux. The inhibitory effect of Ang-II on macrophage cholesterol efflux was found to be mediated by the angiotensin II type 1 (AT-1) receptor, since addition of the AT-1 antagonist Losartan completely blocked the inhibitory effect of Ang-II on the macrophage cholesterol efflux. We thus conclude that Ang-II atherogenicity may be related, at least in part, to its inhibitory effect on macrophage cholesterol efflux, thus leading to cellular cholesterol accumulation, the hallmark of early atherogenesis.  相似文献   

6.
Stress within the endoplasmic reticulum (ER) induces a coordinated response, namely the unfolded protein response (UPR), devoted to helping the ER cope with the accumulation of misfolded proteins. Failure of the UPR plays an important role in several human diseases. Recent studies report that intracellular accumulation of saturated fatty acids (SFAs) and cholesterol, seen in diseases of high incidence, such as obesity or atherosclerosis, results in ER stress. In the present study, we evaluated the effects of perturbations to lipid homeostasis on ER stress/UPR induction in the model eukaryote Saccharomyces cerevisiae . We show that SFA originating from either endogenous (preclusion of fatty acid desaturation) or exogenous (feeding with extracellular SFA) sources trigger ER stress and that ergosterol, the major sterol in yeast, acts synergistically with SFA in this process. This latter effect is connected to ergosterol accumulation within microsomal fractions from SFA-accumulating cells, which display highly saturated phospholipid content. Moreover, treating the cells with the molecular chaperone 4-phenyl butyrate abolishes UPR induction, suggesting that lipid-induced ER stress leads to an overload of misfolded protein that acts, in turn, as the molecular signal for induction of the UPR. The present data are discussed in the context of human diseases that involve lipid deregulation.  相似文献   

7.
Adenosine triphosphate-binding membrane cassette transporter A1 (ABCA1) and ABCG1 play a crucial role in macrophage cholesterol efflux, which is a novel therapeutic target for atherosclerosis. Advanced glycation end products (AGE) and their receptor RAGE axis is involved in accelerated atherosclerosis in diabetes as well. However, the role of AGE-RAGE axis in macrophage cholesterol efflux is not fully understood. We examined here whether AGE-RAGE axis could impair cholesterol efflux from human macrophage cells, THP-1 cells by suppressing ABCA1 and ABCG1 expression. We further investigated the effects of rosuvastatin on cholesterol efflux from AGE-exposed THP-1 cells. AGE increased reactive oxygen species generation in THP-1 cells, which was completely inhibited by rosuvastatin, anti-RAGE-antibody or diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase. The antioxidative effect of rosuvastatin on AGE-exposed THP-1 cells was significantly prevented by geranylgeranyl pyrophosphate (GGPP). AGE decreased ABCA1 and ABCG1 mRNA levels, and subsequently reduced cholesterol efflux from THP-1 cells, which was prevented by GGPP. DPI mimicked the effects of rosuvastain. The results demonstrated that rosuvastatin could inhibit the AGE-induced reduction of THP-1 macrophage cholesterol efflux by suppressing NADPH oxidase activity via inhibition of geranylgeranylation of Rac-1. Our present study provides a novel beneficial aspect of rosuvastatin in diabetes; rosuvastain may prevent the development and progression of atherosclerosis in diabetes by not only reducing serum cholesterol level, but also by improving cholesterol efflux from foam cells of the arterial wall via blocking the harmful effects of AGE on macrophages.  相似文献   

8.
Macrophages facilitate clearance of cholesterol from the body via reverse cholesterol transport (RCT). The first event in RCT is internalization of modified low density lipoprotein by macrophages, upon which PPARγ1 and LXRα signaling pathways are turned on, leading to the transactivation of a cascade of genes (e.g. ABCA1 and ABCG1), whose products promote macrophage cholesterol efflux. Down-regulation of macrophage cholesterol efflux mediators leads to an imbalance in cholesterol homeostasis, promoting foam cell formation. Lipopolysaccharide (LPS) has been shown to suppress PPARγ1 and its downstream target genes in macrophages, inducing foam cell formation; a key mechanism proposed to underlie bacterial infection-induced atherosclerosis. Herein, we show that adipocyte enhancer-binding protein 1 (AEBP1) is up-regulated during monocyte differentiation. Moreover, we provide experimental evidence suggesting that AEBP1 expression is induced by LPS, and that LPS-induced down-regulation of pivotal macrophage cholesterol efflux mediators, leading to foam cell formation, is largely mediated by AEBP1. Although AEBP1-independent pathways seem to contribute to these LPS effects, such pathways can only mediate lesser and delayed effects of LPS on macrophage cholesterol efflux and development of foam cells. We speculate that AEBP1 may serve as a potential therapeutic target for the prevention/treatment of bacterial infection-induced atherosclerosis.  相似文献   

9.
Uncontrolled endoplasmic reticulum (ER) stress responses are proposed to contribute to the pathology of chronic inflammatory diseases such as type 2 diabetes or atherosclerosis. However, the connection between ER stress and inflammation remains largely unexplored. Here, we show that ER stress causes activation of the NLRP3 inflammasome, with subsequent release of the pro-inflammatory cytokine interleukin-1β. This ER-triggered proinflammatory signal shares the same requirement for reactive oxygen species production and potassium efflux compared with other known NLRP3 inflammasome activators, but is independent of the classical unfolded protein response (UPR). We thus propose that the NLRP3 inflammasome senses and responds to ER stress downstream of a previously uncharacterized ER stress response signaling pathway distinct from the UPR, thus providing mechanistic insight to the link between ER stress and chronic inflammatory diseases.  相似文献   

10.
LDL enriched with either saturated, monounsaturated, n-6 polyunsaturated, or n-3 polyunsaturated fatty acids were used to study the effects of dietary fatty acids on macrophage cholesteryl ester (CE) accumulation, physical state, hydrolysis, and cholesterol efflux. Incubation of THP-1 macrophages with acetylated LDL (AcLDL) from each of the four diet groups resulted in both CE and triglyceride (TG) accumulation, in addition to alterations of cellular CE, TG, and phospholipid fatty acyl compositions reflective of the individual LDLs. Incubation with monounsaturated LDL resulted in significantly higher total and CE accumulation when compared with the other groups. After TG depletion, intracellular anisotropic lipid droplets were visible in all four groups, with 71% of the cells incubated with monounsaturated AcLDL containing anisotropic lipid droplets, compared with 30% of cells incubated with n-3 AcLDL. These physical state differences translated into higher rates of both CE hydrolysis and cholesterol efflux in the n-3 group. These data suggest that monounsaturated fatty acids may enhance atherosclerosis by increasing both cholesterol delivery to macrophage foam cells and the percentage of anisotropic lipid droplets, while n-3 PUFAs decrease atherosclerosis by creating more fluid cellular CE droplets that accelerate the rate of CE hydrolysis and the efflux of cholesterol from the cell.  相似文献   

11.
Macrophage-specific overexpression of cholesteryl ester hydrolysis in hormone-sensitive lipase transgenic (HSL Tg) female mice paradoxically increases cholesterol esterification and cholesteryl ester accumulation in macrophages, and thus susceptibility to diet-induced atherosclerosis compared to nontransgenic C57BL/6 mice. The current studies suggest that whereas increased cholesterol uptake could contribute to transgenic foam cell formation, there are no differences in cholesterol synthesis and the expression of cholesterol efflux mediators (ABCA1, ABCG1, apoE, PPARgamma, and LXRalpha) compared to wild-type macrophages. HSL Tg macrophages exhibit twofold greater efflux of cholesterol to apoA-I in vitro, suggesting the potential rate-limiting role of cholesteryl ester hydrolysis in efflux. However, macrophage cholesteryl ester levels appear to depend on the relative efficacy of alternate pathways for free cholesterol in either efflux or re-esterification. Thus, increased atherosclerosis in HSL Tg mice appears to be due to the coupling of the efficient re-esterification of excess free cholesterol to its limited removal mediated by the cholesterol acceptors in these mice. The overexpression of cholesterol acceptors in HSL-apoA-IV double-transgenic mice increases plasma HDL levels and decreases diet-induced atherosclerosis compared to HSL Tg mice, with aortic lesions reduced to sizes in nontransgenic littermates. The results in vivo are consistent with the effective efflux from HSL Tg macrophages supplemented with HDL and apoA-I in vitro, and highlight the importance of cholesterol acceptors in inhibiting atherosclerosis caused by imbalances in the cholesteryl ester cycle.  相似文献   

12.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) induces ER stress. To restore ER homeostasis, cells possess a highly specific ER quality-control system called the unfold protein response (UPR). In the case of prolonged ER stress or UPR malfunction, apoptosis signalling is activated. This ER stress-induced apoptosis has been implicated in the pathogenesis of several conformational diseases. CCAAT-enhancer-binding protein homologous protein (CHOP) is induced by ER stress and mediates apoptosis. Recent studies by the Gotoh group have shown that the CHOP pathway is also involved in ER stress-induced cytokine production in macrophages. The multifunctional roles of CHOP in the ER stress response are discussed below.  相似文献   

13.
14.
15.
Macrophage-specific Abca1 knock-out (Abca1(-)(M)(/-)(M)) mice were generated to determine the role of macrophage ABCA1 expression in plasma lipoprotein concentrations and the innate immune response of macrophages. Plasma lipid and lipoprotein concentrations in chow-fed Abca1(-)(M)(/-)(M) and wild-type (WT) mice were indistinguishable. Compared with WT macrophages, Abca1(-)(M)(/-)(M) macrophages had a >95% reduction in ABCA1 protein, failed to efflux lipid to apoA-I, and had a significant increase in free cholesterol (FC) and membrane lipid rafts without induction of endoplasmic reticulum stress. Lipopolysaccharide (LPS)-treated Abca1(-)(M)(/-)(M) macrophages exhibited enhanced expression of pro-inflammatory cytokines and increased activation of the NF-kappaB and MAPK pathways, which could be diminished by silencing MyD88 or by chemical inhibition of NF-kappaB or MAPK. In vivo LPS injection also resulted in a higher pro-inflammatory response in Abca1(-)(M)(/-)(M) mice compared with WT mice. Furthermore, cholesterol depletion of macrophages with methyl-beta-cyclodextrin normalized FC content between the two genotypes and their response to LPS; cholesterol repletion of macrophages resulted in increased cellular FC accumulation and enhanced cellular response to LPS. Our results suggest that macrophage ABCA1 expression may protect against atherosclerosis by facilitating the net removal of excess lipid from macrophages and dampening pro-inflammatory MyD88-dependent signaling pathways by reduction of cell membrane FC and lipid raft content.  相似文献   

16.
Objective: We investigated the effect of advanced glycated albumin (AGE-albumin) on macrophage sensitivity to inflammation elicited by S100B calgranulin and lipopolysaccharide (LPS) and the mechanism by which HDL modulates this response. We also measured the influence of the culture medium, isolated from macrophages treated with AGE-albumin, on reverse cholesterol transport (RCT). Methods and results: Macrophages were incubated with control (C) or AGE-albumin in the presence or absence of HDL, followed by incubations with S100B or LPS. Also, culture medium obtained from cells treated with C- or AGE-albumin, following S100B or LPS stimulation was utilized to treat naive macrophages in order to evaluate cholesterol efflux and the expression of HDL receptors. In comparison with C-albumin, AGE-albumin, promoted a greater secretion of cytokines after stimulation with S100B or LPS. A greater amount of cytokines was also produced by macrophages treated with AGE-albumin even in the presence of HDL. Cytokine-enriched medium, drawn from incubations with AGE-albumin and S100B or LPS impaired the cholesterol efflux mediated by apoA-I (23% and 37%, respectively), HDL(2) (43% and 47%, respectively) and HDL(3) (20% and 8.5%, respectively) and reduced ABCA-1 protein level (16% and 26%, respectively). Conclusions: AGE-albumin primes macrophages for an inflammatory response impairing the RCT. Moreover, AGE-albumin abrogates the anti-inflammatory role of HDL, which may aggravate the development of atherosclerosis in DM.  相似文献   

17.
18.
Naringenin improves lipoprotein profile and protects against cardiovascular disease. ATF6 is an endoplasmic reticulum (ER) stress sensor with the same activation processes with sterol regulator SREBPs. Clinical data revealed that ATF6 expression was associated with plasma cholesterol level. Here, we investigated whether naringenin was involved in the regulation of cholesterol efflux and tested the role of ER stress-ATF6 in the naringenin function. Results showed that naringenin increased cholesterol efflux to both apoA-I and HDL and gene expressions in ABCA1, ABCG1 and LXRα in RAW264.7 macrophages. Naringenin inhibited the cleaved ATF6 nuclear translocation and its target GRP78 and XBP-1 expressions. Naringenin-induced cholesterol efflux was modulated by treatment with ER stress inhibitor 4-phenylbutyric acid, inducer tunicamycin and ATF6 overexpression in RAW264.7 and/or THP-1 cells, which suggested the naringenin functions were mediated through inhibiting ER stress-ATF6 pathway. Next, we found high-fat diet (HFD) supplemented with naringenin increased by >1.2-fold in cholesterol efflux capacity in primary peritoneal macrophage in apoE−/− mice compared to only HFD-fed mice. The increase was significantly reduced by tunicamycin treatment. Naringenin decreased GRP78, XBP-1 and nuclear ATF6 levels in peritoneal macrophage and aorta and reduced atherosclerotic lesion at aortic root, but reversed by tunicamycin. These confirmed participation of ER stress-ATF6 in naringenin efficacy. Finally, we found naringenin promoted AKT phosphorylation; PI3K inhibitor LY294002 treatment increased nuclear ATF6 and reduced naringenin-enhanced ABCA1 expression and cholesterol efflux. We concluded naringenin as a regulator for cholesterol efflux, and the regulation was mediated by ATF6 branch of ER stress and PI3K/AKT pathway.  相似文献   

19.
20.
HIV infection, through the actions of viral accessory protein Nef, impairs activity of cholesterol transporter ABCA1, inhibiting cholesterol efflux from macrophages and elevating the risk of atherosclerosis. Nef also induces lipid raft formation. In this study, we demonstrate that these activities are tightly linked and affect macrophage function and HIV replication. Nef stimulated lipid raft formation in macrophage cell line RAW 264.7, and lipid rafts were also mobilized in HIV-1-infected human monocyte-derived macrophages. Nef-mediated transfer of cholesterol to lipid rafts competed with the ABCA1-dependent pathway of cholesterol efflux, and pharmacological inhibition of ABCA1 functionality or suppression of ABCA1 expression by RNAi increased Nef-dependent delivery of cholesterol to lipid rafts. Nef reduced cell-surface accessibility of ABCA1 and induced ABCA1 catabolism via the lysosomal pathway. Despite increasing the abundance of lipid rafts, expression of Nef impaired phagocytic functions of macrophages. The infectivity of the virus produced in natural target cells of HIV-1 negatively correlated with the level of ABCA1. These findings demonstrate that Nef-dependent inhibition of ABCA1 is an essential component of the viral replication strategy and underscore the role of ABCA1 as an innate anti-HIV factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号