首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z He  J Wiegel 《Journal of bacteriology》1996,178(12):3539-3543
A 3,4-dihydroxybenzoate decarboxylase (EC 4.1.1.63) from Clostridium hydroxybenzoicum JW/Z-1T was purified and partially characterized. The estimated molecular mass of the enzyme was 270 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a single band of 57 kDa, suggesting that the enzyme consists of five identical subunits. The temperature and pH optima were 50 degrees C and pH 7.0, respectively. The Arrhenius energy for decarboxylation of 3,4-dihydroxybenzoate was 32.5 kJ . mol(-1) for the temperature range from 22 to 50 degrees C. The Km and kcat for 3,4-dihydroxybenzoate were 0.6 mM and 5.4 x 10(3) min(-1), respectively, at pH 7.0 and 25 degrees C. The enzyme optimally catalyzed the reverse reaction, that is, the carboxylation of catechol to 3,4-dihydroxybenzoate, at pH 7.0. The enzyme did not decarboxylate 2-hydroxybenzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 2,3,4-trihydroxybenzoate, 3,4,5-trihydroxybenzoate, 3-F-4-hydroxybenzoate, or vanillate. The decarboxylase activity was inhibited by 25 and 20%, respectively, by 2,3,4- and 3,4,5-trihydroxybenzoate. Thiamine PPi and pyridoxal 5'-phosphate did not stimulate and hydroxylamine and sodium borohydride did not inhibit the enzyme activity, indicating that the 3,4-dihydroxybenzoate decarboxylase is not a thiamine PPi-, pyridoxal 5'-phosphate-, or pyruvoyl-dependent enzyme.  相似文献   

2.
The inactivation kinetics of a human thyroid peroxidase protein fraction upon sonication (ultrasound frequency 27 kHz, power 60 W/cm2) of the enzyme solution in 15 mM phosphate buffer, pH 7.5, was studied. To quantitatively characterize the dependence of the slowest stage of the human thyroid peroxidase inactivation on temperature (36.0-50.4) degrees C, an effective constant of ultrasound inactivation rate Kin(US) was used. From the temperature dependence of Kin(US) at temperatures below 43 degrees C, the activation energy was estimated to be 8.11 kcal/mol. It was shown that the rate of human thyroid peroxidase inactivation strongly depends on the concentration of total protein in solution: the kin(US) value decreases more than sixfold in the protein concentration range from 0.2 to 0.8 mg/ml. It was also shown that poly(2-aminodisulfide-4-nitrophenol), its complexes with human serum albumin as well as the complexes human serum albumin--poly(gallic acid disulfide) substantially inhibit the ultrasound-induced inactivation of the enzyme and can be its effective stabilizers in the ultrasound cavitation field. This confirms the suggestion that active free radicals HO., O2.- and HO2. play a key role in the inactivation of human thyroid peroxidase. A general scheme of the inactivation of human thyroid peroxidase is proposed, which represents a chain of successive and parallel reversible and irreversible elementary steps.  相似文献   

3.
The kinetic and thermodynamic properties of ascorbate oxidase (AO) activity and stability of a Cucurbita maxima extract were investigated. Activity tests performed at 25 degrees C using initial ascorbic acid concentration in the range 50-750 M allowed estimating the Michaelis constant for this substrate (Km = 126 microM) and the maximum initial rate of ascorbic acid oxidation (A0,max = 1.57 mM min-1). The main thermodynamic parameters of the enzyme reaction (DeltaH* = 10.3 kJ mol-1; DeltaG* = 87.2 kJ mol-1; DeltaS* = -258 J mol-1 K-1) were estimated through activity tests performed at 25-48 C. Within such a temperature range, no decrease in the initial reaction rate was detected. The long-term thermostability of the raw extract was then investigated by means of residual activity tests carried out at 10-70 degrees C, which allowed estimating the thermodynamic parameters of the irreversible enzyme inactivation as well (DeltaH*D = 51.7 kJ mol-1; DeltaG*D = 103 kJ mol-1; S*D = -160 J mol-1 K-1). Taking into account the specific rate of AO inactivation determined at different temperatures, we also estimated the enzyme half-life (1047 min at 10 degrees C and 21.2 min at 70 degrees C) and predicted the integral activity of a continuous system using this enzyme preparation. This work should be considered as a preliminary attempt to characterize the AO activity of a C. maxima extract before its concentration by liquid-liquid extraction techniques.  相似文献   

4.
The inactivation kinetics of o-diphenoloxidase isolated from potato tubers was studied in the process of pyrocatechol oxidation. The enzyme when saturated with the substrate is inactivated with the inactivation rate constant kin = 0.5-1.0 min-1; kin depends on the initial concentration of pyrocatechol. The ultimate yield of the enzymic reaction product increases linearly with the initial concentration of the enzyme. Introduction of ethylene-diaminosulphate, a substance which condenses with o-quinones, does not increase the operation stability of o-diphenoloxidase. The data obtained evidence for inactivation of o-diphenoloxidase either at the level of the enzyme-substrate complex or due to bimolecular reaction with the substrate.  相似文献   

5.
Imipenem as substrate and inhibitor of beta-lactamases.   总被引:1,自引:0,他引:1       下载免费PDF全文
The interaction between imipenem, a carbapenem antibiotic, and two representative beta-lactamases has been studied. The first enzyme was beta-lactamase I, a class-A beta-lactamase from Bacillus cereus; imipenem behaved as a slow substrate (kcat. 6.7 min-1, Km 0.4 mM at 30 degrees C and at pH 7) that reacted by a branched pathway. There was transient formation of an altered species formed in a reversible reaction; this species was probably an acyl-enzyme in a slightly altered, but considerably more labile, conformation. The kinetics of the reaction were investigated by measuring both the concentration of the substrate and the activity of the enzyme, which fell and then rose again more slowly. The second enzyme was the chromosomal class-C beta-lactamase from Pseudomonas aeruginosa; imipenem was a substrate with a low kcat. (0.8 min-1) and a low Km (0.7 microM). Possible implications for the clinical use of imipenem are considered.  相似文献   

6.
Protein ferroxidase site(s), which catalyze the reaction between ferrous ion and dioxygen, have long been thought to play a role in core formation in ferritin; however, the mechanism of the reaction has never been studied in detail. In the present work, the enzymatic activity of ferritin was examined using oximetry, the net Fe2+ oxidation reaction being as follows. [formula: see text] The reaction exhibits saturation kinetics with respect to both Fe2+ and O2 (apparent Michaelis constants: Km,Fe = 0.35 +/- 0.01 mM and Km,O2 = 0.14 +/- 0.03 mM). The enzyme has a turnover number kcat = 80 +/- 3 min-1 at 20 degrees C with maximal activity at pH 7. The kinetics are discussed in terms of two mechanisms, one involving monomeric and the other dimeric iron protein complexes. In both instances Fe(II) oxidation occurs in 1-electron steps. Zinc(II) is a competitive inhibitor of iron(II) oxidation at Zn2+/apoprotein ratios > or = 6 (inhibitor constant KI,Zn = 0.067 +/- 0.011 mM) but appears to be a noncompetitive inhibitor at lower ratios (< or = 2), indicating the presence of more than one type of zinc binding site on the protein. At increments of 50 Fe2+/protein or less, all of the iron is oxidized via the protein ferroxidase site(s), independent of the amount of core already present. However, when larger increments are employed, some iron oxidation appears to occur on the surface of the mineral core. The results of these studies emphasize the role of the protein shell in all phases of core growth and confirm the presence of a functionally important catalytic site in ferritin in addition to other binding sites on the protein for iron.  相似文献   

7.
An assay to measure the rate of enzymatic formation of 3-methylindole (3MI) from indoleacetic acid (IAA) in Lactobacillus sp. strain 11201 was developed. The reaction mixture contained 50 micrograms of microbial protein per ml (range, 25 to 100 mg/ml), essential low-molecular-weight reaction ingredients, and radiolabeled IAA as substrate (range, 0 to 2 mM IAA). The reaction was anaerobic for 25 min at 39 degrees C. The apparent Michaelis-Menten constants were: Km, 0.14 mM IAA; and Vmax, 64 nmol 3MI.mg-1.min-1. The inhibitors avidin, aminopterin, and EDTA had no effect on the 3MI-forming enzyme. Dithionite stimulated the 3MI-forming enzyme. The product of the reaction, 3MI, acted as a noncompetitive inhibitor of the enzyme. Enzyme activity was associated with the cell wall fraction after sonication; treatment with the French press; or treatment with detergents, proteolytic enzymes, and EDTA.  相似文献   

8.
The TaqI restriction endonuclease recognizes and cleaves the duplex DNA sequence T decreases CGA. Steady state kinetic analysis with a small oligodeoxyribonucleotide substrate showed that the enzyme obeyed Michaelis-Menten kinetics (Km = 53 nM, kcat = 1.3 min-1 at 50 degrees C and Km = 0.5 nM, kcat = 2.9 min-1 at 60 degrees C). At 0 degree C, the enzyme was completely inactive, while at 15 degrees C, turnover produced nicked substrate as the major product in excess of enzyme indicating dissociation between nicking events. Above 37 degrees C, both strands in the duplex were cleaved prior to dissociation. In contrast to the tight, temperature-dependent binding of substrate, binding of the Mg2+ cofactor was weak (Kd = 2.5 mM) and the same at either 50 degrees C or 60 degrees C. Single-turnover experiments using oligonucleotide substrate showed that hydrolysis of duplex DNA occurred via two independent nicking events, each with a first order rate constant (kst) of 5.8 min-1 at 60 degrees C and 3.5 min-1 at 50 degrees C. The pH dependence of Km (pKa = 9) and kst (pKa = 7) suggests Lys/Arg and His, respectively, as possible amino acids influencing these constants. Moreover, although kst increased significantly with pH, kcat did not, indicating that at least two steps can be rate-controlling in the reaction pathway. Binding of protein to canonical DNA in the presence of Mg2+ at 0 degree C or in the absence of Mg2+ at 50 degrees C was weak (Kd = 2.5 microM or 5,000-fold weaker than the optimal measured Km) and equal to the binding of noncanonical DNA as judged by retention on nitrocellulose. Similar results were seen in gel retardation assays. These results suggest that both Mg2+ and high temperature are required to attain the correct protein conformation to form the tight complex seen in the steady state analysis. In the accompanying paper (Zebala, J. A., Choi, J., Trainor, G. L., and Barany, F. (1992) J. Biol. Chem. 267, 8106-8116), we report how these kinetic constants are altered using substrate analogues and propose a model of functional groups involved in TaqI endonuclease recognition.  相似文献   

9.
A new restriction endonuclease SuaI was isolated from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. The enzyme is an isoschizomer of BspR1; it recognizes tetranucleotide GGCC and cleaves DNA in the center of this sequence. SuaI requires Mg2+, the optimal concentration being 6 mM. KCl at concentrations above 25 mM significantly inhibits the enzyme activity. The pH optimum lies within the range of 6--7 at 70 degrees C, the temperature optimum is at 70--75 degrees C. The enzyme is highly stable at temperatures up to 80 degrees C. DNA of S. acidocaldarius is not cleaved by the enzyme.  相似文献   

10.
Crystalline L-histidine ammonia-lyase of Achromobacter liquidum was prepared with a 24% recovery of the activity. The specific activity of the pure enzyme (63 mumol of urocanic acid min-1 mg-1) is similar to those so far reported for the enzyme from other sources. The purified enzyme appeared to be homogeneous by analytical disc electrophoresis and isoelectric focusing (pI = 4.95). The molecular weight determined by Sephadex G-200 gel filtration is 200000. The optimum pH is 8.2, and the optimum temperature is 50 degrees C. The enzyme showed strict specificity to L-histidine (Km = 3.6 mM). Several histidine derivatives are not susceptible to the enzyme but do inhibit the enzyme activity competitively; the most effective inhibitors are L-histidine methyl ester (Ki = 3.66 mM) and beta-imidazole lactic acid (Ki = 3.84 mM). L-Histidine hydrazide (Ki = 36 mM) and imidazole (Ki = 6 mM) noncompetitively inhibited the enzyme EDTA markedly inhibited enzyme activity and this inhibition were reversed by divalent metal ions such as Mn2+, Co2+ Zn2+, Ni2+, Mg2+, and Ca2+. These results suggest that the presence of divalent metal ions is necessary for the catalytic activity of histidine ammonia-lyase. Sodium borohydride and hydrogen peroxide inhibited the enzyme activity.  相似文献   

11.
1. The Michaelis-Menten parameters of labelled D-glucose exit from human erythrocytes at 2 degrees C into external solution containing 50 mM D-galactose were obtained. The Km is 3.4 +/0 0.4 mM, V 17.3 +/- 1.4 MMOL . 1(-1) cell water . min-1 for this infinite-trans exit procedure. 2. The kinetic parameters of equilibrium exchange of D-glucose at 2 degrees C are Km = 25 +/- 3.4 mM, V 30 +/- 4.1 mmol . 1(-1) cell water . min-1. 3. The Km for net exit of D-glucose into solutions containing zero sugar is 15.8 +/- 1.7 mM, V 9.3 +/- 3.3 mmol . 1(-1) cell water . min-1. 4. This experimental evidence corroborates the previous finding of Hankin, B.L., Lieb, W.R. and Stein, W.D. [(1972) Biochim. Biophys. Acta 255, 126--132] that there are sites with both high and low operational affinities for D-glucose at the inner surface of the human erythrocyte membrane. This result is inconsistent with current asymmetric carrier models of sugar transport.  相似文献   

12.
Pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase is inactivated by N-(bromoacetyl)pyridoxamine 5'-phosphate (BAPMP) in a reaction which follows first-order kinetics at pH 7.5 and 25 degrees C. The concentration dependence of inactivation reveals saturation kinetics with an apparent Ki of 0.16 mM and kinact of 0.086 min-1 at saturating inhibitor concentration. Enzyme can be protected from inactivation by pyridoxal 5'-phosphate. Inactivation of enzyme by [14C]BAPMP proceeds with the incorporation of a stoichiometric amount of labeled inhibitor. Proteolytic digestions of the radioactively labeled enzyme followed by high-performance liquid chromatography allow the isolation of the modified peptide corresponding to the sequence Ala-Ala-Ser-Pro-Ala-Cys-Thr-Glu-Leu in which cysteine (Cys111) is the modified residue. The conservation of this residue and also of an extended region around it in all Dopa decarboxylases so far sequenced is underlined. The overall conclusion of these findings is that Cys111 may be at, or near, the pyridoxal-5'-phosphate binding site of pig kidney Dopa decarboxylase and plays a critical role in the catalytic function of the enzyme. Furthermore, fluorescence studies of BAPMP-modified apoenzyme provide useful information on the microenvironment of the affinity label at its binding site.  相似文献   

13.
The effect of temperature on the activity and structural stability of an acid phosphatase (EC 3.1.3.2.) purified from castor bean (Ricinus communis L.) seeds have been examined. The enzyme showed high activity at 45 degrees C using p-nitrophenylphosphate (p-NPP) as substrate. The activation energy for the catalyzed reaction was 55.2 kJ mol(-1) and the enzyme maintained 50% of its activity even after 30 min at 55 degrees C. Thermal inactivation studies showed an influence of pH in the loss of enzymatic activity at 60 degrees C. A noticeable protective effect from thermal inactivation was observed when the enzyme was preincubated, at 60 degrees C, with the reaction products inorganic phosphate-P (10 mM) and p-nitrophenol-p-NP(10 mM). Denaturation studies showed a relatively high transition temperature (Tm) value of 75 degrees C and an influence of the combination of Pi (10 mM) and p-NP (10 mM) was observed on the conformational behaviour of the macromolecule.  相似文献   

14.
The D-aminoacylase produced by Alcaligenes denitrificans DA181 was a new type of aminoacylase which had both high stereospecificity and specific activity. The molecular weight and isoelectric point of this enzyme were 58,000 and 4.4, respectively. The apparent Km and kcat values of this enzyme for N-acetyl-D-methionine were estimated to be 0.48 mM and 6.24 x 10(4) min-1, respectively. The optimum temperature was 45 degrees C. The enzyme was stable up to 55 degrees C for 1 hr in the presence of 0.2 mg/ml bovine serum albumin. The enzyme was stable in the pH range of 6.0 to 11.0 with an optimum pH of 7.5. This enzyme contained about 2.1 g atom of zinc per mole of enzyme. Enzyme activity was inhibited by incubation with EDTA. The inhibition by EDTA was fully reversed by Co2+ and partially by Zn2+.  相似文献   

15.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 25 degrees C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as L-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation.  相似文献   

16.
Glutamate dehydrogenase (GDH) was purified to homogeneity from the liver of euthermic (37 degrees C body temperature) and hibernating (torpid, 5 degrees C body temperature) Richardson's ground squirrels (Spermophilus richardsonii). SDS-PAGE yielded a subunit molecular weight of 59.5+/-2 kDa for both enzymes, but reverse phase and size exclusion HPLC showed native molecular weights of 335+/-5 kDa for euthermic and 320+/-5 kDa for hibernator GDH. Euthermic and hibernator GDH differed substantially in apparent Km values for glutamate, NH4+, and alpha-ketoglutarate, as well as in Ka and IC50 values for nucleotide and ion activators and inhibitors. Kinetic properties of each enzyme were differentially affected by assay temperature (37 versus 5 degrees C). For example, the Km for alpha-ketoglutarate of euthermic GDH was higher at 5 degrees C (3.66+/-0.34 mM) than at 37 degrees C (0.10+/-0.01 mM), whereas hibernator GDH had a higher affinity for alpha-ketoglutarate at 5 degrees C (Km was 0.98+/-0.08 mM at 37 degrees C and 0.43+/-0.02 mM at 5 degrees C). Temperature effects on Ka ADP values of the enzymes followed a similar pattern; GTP inhibition was strongest with the euthermic enzyme at 37 degrees C and weakest with hibernator GDH at 5 degrees C. Entry into hibernation leads to stable changes in the properties of ground squirrel liver GDH that allow the enzyme to function optimally at the prevailing body temperature.  相似文献   

17.
A new enzyme, NAD+-dependent 4-N-trimethylamino-1-butanol dehydrogenase from Pseudomonas sp. 13CM, was purified 526-fold to apparent homogeneity in 5 chromatographic steps. The enzyme had a molecular mass of 45 kDa and appeared to be a monomer enzyme. The isoeletric point was found to be 4.8. The optimum temperature was 50 degrees C, and the optimum pHs for the oxidation and reduction reactions were 9.5 and 6.0 respectively. The purified enzyme was further characterized with respect to substrate specificity, kinetic parameters, and amino acid terminal sequence. The Km values for trimethylamino-1-butanol and NAD+ were 0.54 mM and 0.22 mM respectively. In the reduction reaction, the apparent Km values for trimethylaminobutylaldehyde and NADH were 0.67 mM and 0.04 mM, respectively. The enzyme was inhibited by SH reagents, chelating reagents, and heavy metal ions. The N-terminal 12 amino acid residues were sequenced.  相似文献   

18.
An extracellular beta-glucosidase (EC 3.2.1.21) was purified from culture filtrate of the anaerobic rumen fungus Orpinomyces sp. strain PC-2 grown on 0.3% (wt vol-1) Avicel by using Q Sepharose anion-exchange chromatography, ammonium sulfate precipitation, chromatofocusing ion-exchange chromatography, and Superose 12 gel filtration. The enzyme is monomeric with a M(r) of 85,400, as estimated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, has a pI of 3.95, and contains about 8.5% (wt vol-1) carbohydrate. The N terminus appears to be blocked. The enzyme catalyzes the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (PNPG). The Km and Vmax values with cellobiose as the substrate at pH 6.0 and 40 degrees C are 0.25 mM and 27.1 mumol.min-1 x mg-1, respectively; with PNPG as the substrate, the corresponding values are of 0.35 mM and 27.7 mumol.min-1 x mg-1. Glucose (Ki = 8.75 mM, with PNPG as the substrate) and gluconolactone (Ki = 1.68 x 10(-2) and 2.57 mM, with PNPG and cellobiose as the substrates, respectively) are competitive inhibitors. Optimal activity with PNPG and cellobiose as the substrates is at pH 6.2 and 50 degrees C. The enzyme has high activity against sophorose (beta-1,2-glucobiose) and laminaribiose (beta-1,3-glucobiose) but has no activity against gentiobiose (beta-1,6-glucobiose). The activity of the beta-glucosidase is stimulated by Mg2+, Mn2+, Co2+, and Ni2+ and inhibited by Ag+, Fe2+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate.  相似文献   

19.
The catalytic properties of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from avian liver have been investigated. Solubilized and highly purified reductase preparations were not cold labile, and enzymic activity remained unchanged following preincubation at 37 degrees C. The pH optimum was 6.8--7.0 and maximal catalytic activity was achieved with 2 mM dithiothreitol and 0.75 M KCl. The heat stability of the enzyme was studied and the addition of 0.75 M KCl, 0.8 mg/ml bovine serum albumin and 5 mM NADPH reduced the inactivation of the purified reductase associated with heat treatment at 65 degrees C. At 37 degrees C, 0.8 mg/ml bovine serum albumin enhanced the purified reductase activity by 100 (+/- 20)%. An improved assay was developed for the avian hydroxymethylglutaryl-CoA reductase and the specific activity of the purified enzyme increased from 1550 to 3300 nmol . min-1 . mg-1. The Km values of solubilized and purified reductase for D-hydroxymethylglutaryl-CoA were 1.05 micrometer and 1.62 micrometer, and for NADPH, 1 mM and 263 micrometer, respectively. The activities of the reductase preparations were non-competitively inhibited by coenzyme A, acyl-CoA esters, and hydroxymethylglutarate. MgATP also reduced avian reductase activity. These modulators may play a role in the cellular regulation of the reductase activity.  相似文献   

20.
The kinetic parameters of net exit of D-glucose from human red blood cells have been measured after the cells were loaded to 18 mM, 75 mM and 120 mM at 2 degrees C and 75 mM and 120 mM at 20 degrees C. Reducing the temperature, or raising the loading concentration raises the apparent Km for net exit. Deoxygenation also reduces the Km for D-glucose exit from red blood cells loaded initially to 120 mM at 20 degrees C from 32.9 +/- 2.3 mM (13) with oxygenated blood to 20.5 +/- 1.3 mM (17) (P less than 0.01). Deoxygenation increases the ratio Vmax/Km from 5.29 +/- 0.26 min-1 (13) for oxygenated blood to 7.13 +/- 0.29 min-1 (17) for deoxygenated blood (P less than 0.001). The counterflow of D-glucose from solutions containing 1 mM 14C-labelled D-glucose was measured at 2 degrees C and 20 degrees C. Reduction in temperature, reduced the maximal level to which labelled D-glucose was accumulated and altered the course of equilibration of the specific activity of intracellular D-glucose from a single exponential to a more complex form. Raising the internal concentration from 18 mM to 90 mM at 2 degrees C also alters the course of equilibration of labelled D-glucose within the cell to a complex form. The apparent asymmetry of the transport system may be estimated from the intracellular concentrations of labelled and unlabelled sugar at the turning point of the counterflow transient. The estimates of asymmetry obtained from this approach indicate that there is no significant asymmetry at 20 degrees C and at 2 degrees C asymmetry is between 3 and 6. This is at least 20-fold less than predicted from the kinetic parameter asymmetries for net exit and entry. None of the above results fit a kinetic scheme in which the asymmetry of the transport system is controlled by intrinsic differences in the kinetic parameters at the inner and outer membrane surface. These results are consistent with a model for sugar transport in which movement between sugar within bound and free intracellular compartments can become the rate-limiting step in controlling net movement into, or out of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号