首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Crosstalk of prolyl isomerases, Pin1/Ess1, and cyclophilin A.   总被引:1,自引:0,他引:1  
Previous studies have indicated that Ess1/Pin1, a gene in the parvulin family of peptidyl-prolyl isomerases (PPIases), plays an important role in regulating the G(2)/M transition of the cell cycle by binding cell-cycle-regulating proteins in eukaryotic cells. Although the ess1 gene has been considered to be essential in yeast, we have isolated viable ess1 deletion mutants and demonstrated, via analysis of yeast gene expression profiles using microarray techniques, a novel regulatory role for ESS1 in the G(1) phase. Although the overall expression profiles in the tested strains (C110-1, W303, S288c, and RAY-3AD) were similar, marked changes were detected for a number of genes involved in the molecular action of ESS1. Among these, the expression levels of a cyclophilin A gene, also a member of the PPIase family, increased in the ess1 null mutant derived from C110-1. Subsequent treatment with cyclosporin A significantly retarded growth, which suggests that ESS1 and cyclophilin A are functionally linked in yeast cells and play important roles at the G(1) phase of the cell cycle.  相似文献   

3.
脂筏与T细胞信号转导   总被引:2,自引:0,他引:2  
抗原提呈细胞将抗原加工处理后通过MHCⅠ/MHCⅡ类分子提呈供T细胞识别。TCR对抗原的识别引起一系列下游信号事件的发生,最终使T细胞激活,但对TCR复合物结合抗原后引起胞内区磷酸化的早期事件机制还不是很清楚。最近的研究揭示脂筏参与了这一早期信号事件的发生。脂筏是一种膜脂双层内含有的特殊微区,T细胞膜表面参与T细胞激活的各种关键信号分子都定位于脂筏。T细胞激活过程中脂筏通过聚集和重分配形成一个信号转导的平台。  相似文献   

4.
5.
Multiple kinases interact at the multicomponent murine T cell antigen receptor. Antigen induces serine phosphorylation of the 21-kDa gamma glycoprotein and tyrosine phosphorylation of p21, a distinct 21-kDa chain. We demonstrate that tyrosine phosphorylation is due to kinase activation, and that all phosphorylated p21 is associated with the antigen receptor. We also show that antigen leads to polyphosphoinositide metabolism and subsequent protein kinase C activation. The two phosphorylation events can be dissociated by protein kinase C depletion, which eliminates phorbol 12-myristate 13-acetate-induced serine but not tyrosine phosphorylation. Activation of a third kinase, cyclic AMP-dependent protein kinase, inhibits both serine and tyrosine events, yet this inhibition can be modulated by addition of the protein kinase C activator, phorbol 12-myristate 13-acetate. Receptor-mediated signal transduction may be understood as the interaction of multiple stimulatory and inhibitory kinase activities.  相似文献   

6.
The pleiotropic actions of PRL are necessary for mammary growth and differentiation and in vitro lymphoid proliferation. The proximal action of this ligand is mediated by its cell surface receptor via associated networks. PRL action, however, is also associated with the internalization and translocation of this hormone into the nucleus. To delineate the mechanism of this retrotranslocation, a yeast two-hybrid screen was performed and revealed an interaction between PRL and cyclophilin B (CypB). CypB is a peptidyl prolyl isomerase (PPI) found in the endoplasmic reticulum, extracellular space, and nucleus. The interaction between CypB and PRL was subsequently confirmed in vitro and in vivo through the use of recombinant proteins and coimmunoprecipitation studies. The exogenous addition of CypB potentiated the 3H-thymidine incorporation of PRL-dependent cell lines up to 18-fold. CypB by itself was nonmitogenic and did not potentiate the action of GH or other interleukins. CypB did not alter the affinity of the PRL receptor (PRLr) for its ligand, or increase the phosphorylation of PRLr-associated Jak2 or Stat5a. The potentiation of PRL-action by CypB, however, was accompanied by a dramatic increase in the nuclear retrotranslocation of PRL. A CypB mutant, termed CypB-NT, was generated that lacked the wild-type N-terminal nuclear localization sequence. Although CypB-NT demonstrated levels of PRL binding and PPI activity equivalent to wild-type CypB, it was incapable of mediating the nuclear retrotranslocation of PRL or enhancing PRL-driven proliferation. These studies reveal CypB as an important chaperone facilitating the nuclear retrotransport and action of the lactogenic hormones.  相似文献   

7.
8.
We report here the existence of a subfamily of eukaryotic parvulin proteins that have strong sequence homology with E. coli parvulin, but lack the WW domain found in previously described eukarytoic parvulins. We hence term members of this subfamily EPVH (eukaryotic parvulin homologue). We describe the characterisation of hEPVH (human eukaryotic parvulin homologue). Immunogold labelling transmission electron microscopy reveals that hEPVH is preferentially localised in the mitochondrial matrix. The homology of hEPVH with its prokaryotic ancestor supports the hypothesis that this protein may have a mitochondrial function. An essential role in this organelle may explain the need for a high degree of conservation of this protein between distantly related species.  相似文献   

9.
Although cortical (CD4+CD8+) thymocytes mobilize intracellular calcium poorly when CD3/TCR is ligated, we have found that murine cortical thymocytes can transduce strong biochemical signals in response to ligation of the CD3/Ti TCR complex (CD3/TCR) and that the signals are regulated by CD4 and CD8 interactions with CD3/TCR. Striking increases in intracellular calcium were observed in cortical thymocytes from transgenic mice containing productively rearranged alpha and beta TCR genes, when CD3 or TCR was cross-linked with CD4 or CD8 using heteroconjugated mAb. However, in mature T cells derived from lymph nodes of these mice, identical stimuli elicited calcium responses that were significantly smaller in magnitude. A thymocyte cell line that expresses a low level of the transgenic TCR and has a phenotype characteristic of cortical thymocytes (CD4+CD8+J11d+Thy-1+) was established from a female alpha beta TCR transgenic mouse. Cross-linking of CD4 or CD8 molecules to CD3/TCR induced strong calcium responses in these cells. Responses were weak or absent when CD3 or TCR were aggregated alone. Heteroconjugates of Thy-1xCD3 did not increase the intracellular calcium concentration in transgenic thymocytes or in the thymocyte cell line, although Thy-1 is highly expressed on immature cells. Enhanced tyrosine phosphorylation was observed when CD3 or TCR was cross-linked with CD4 or CD8 on transgenic thymocytes or on the thymocyte cell line, in comparison with aggregation of CD3/TCR alone. Taken together, these data show that CD4 and CD8 molecules allow the weakly expressed CD3/TCR of cortical thymocytes to transduce strong intracellular signals upon receptor ligation. These signals may be involved in selection processes at the CD4+CD8+ stage of differentiation.  相似文献   

10.
Cytoplasmic extracts prepared from T cell lines undergoing antigen-specific, interleukin-2 (IL-2)-dependent proliferation were tested for their ability to induce DNA synthesis in isolated, quiescent nuclei. A tetanus toxoid (TET)-specific T cell line, established from peripheral blood of a normal human volunteer, was stimulated in the presence of relevant antigen and 1 unit/ml IL-2. Cytoplasmic extracts prepared from these cells were capable of inducing DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated nuclei correlated positively with the degree of proliferation induced in these cells. In contrast, incubation of this T cell line in the absence of antigen failed to induce proliferation and cytoplasmic extracts prepared from these cells induced little to no DNA synthesis in isolated, quiescent nuclei. The factor present in the cytoplasm of T cells stimulated with relevant antigen in the presence of IL-2 is similar, if not identical, to a factor which we have previously demonstrated in cytoplasmic extracts prepared from transformed lymphoblastoid cell lines and from mitogenically stimulated normal human peripheral blood mononuclear cells. This factor, which we have called activator of DNA replication (ADR) is a heat-labile protein, and is inactivated by treatment with protease inhibitors, including aprotinin. The ability of cytoplasmic extracts from T cells undergoing antigen-specific, IL-2-dependent proliferation to induce DNA synthesis in isolated, quiescent nuclei was markedly inhibited in the presence of aprotinin, providing strong evidence that a cytoplasmic activator of DNA replication, ADR, is involved in the signal transduction process for antigen-specific, IL-2-dependent T cell proliferation. ADR may represent a common intracellular mediator of DNA synthesis in activated and transformed lymphocytes.  相似文献   

11.
12.
Cell adhesion molecules, signal transduction and cell growth   总被引:11,自引:0,他引:11  
Signals from dynamic cellular interactions between the extracellular matrix and neighboring cells ultimately input into the cellular decision-making process. These interactions form the basis of anchorage-dependent growth. Recent advances have provided the mechanistic details behind the ability of integrins, and other cell adhesion molecules (CAMs), to regulate both early signal transduction events initiated by soluble factors and downstream events more proximally involved in cell cycle progression. These actions appear to depend on the ability of CAMs to initiate the formation of organized structures that permit the efficient flow of information.  相似文献   

13.
14.
Cyclophilin (CyP), a major cytosolic protein possessing peptidyl-prolyl cis-trans isomerase activity, has been implicated as the specific receptor of the immunosuppressive drug cyclosporin A (CsA). To identify other potential CsA receptors related to CyP, two human cDNA libraries were screened under low stringency conditions using human CyP cDNA (encoding hCyP1) as a probe. Two cDNAs were identified which encode distinct proteins related to human hCyP1. These two novel proteins, designated hCyP2 and hCyP3, share 65 and 76% amino acid sequence homology with hCyP1, respectively. Both hCyP2 and hCyP3 contain NH2-terminal hydrophobic extensions of 32 and 42 amino acids, respectively. Protein-specific antibodies revealed the predominant association of hCyP2 and hCyP3 with membranes and subcellular organelles, which suggests that the amino-terminal leader sequences of the two CyP isoforms may act as signal peptides. In contrast to the results with hCyP1, Southern blot analysis indicated that both hCyP2 and hCyP3 gene sequences are represented infrequently in the human genome. Northern and Western blot analysis showed that the distribution of mRNA and proteins of the three hCyPs in differing tissues and cell types was similar. Each hCyP protein was expressed in Escherichia coli, purified, and shown to be an active peptidyl-prolyl isomerase. Substrate specificity was examined with 11 synthetic peptides (Suc-Xaa-Yaa-Pro-Phe-4-nitroanilide), and inhibition of the peptidyl-prolyl isomerase activities associated with hCyP1, hCyP2, and hCyP3 was studied with CsA, MeAla6-CsA and MeBm2t1-CsA. From both equilibrium considerations and the results of kinetic characterizations it is proposed that of these three CyP proteins, hCyP1 is the most likely intracellular target for CsA.  相似文献   

15.
16.
Periplasmic PPIases (peptidylprolyl cis-trans isomerases) catalyse the cis-trans isomerization of peptidyl-prolyl bonds, which is a rate-limiting step during protein folding. We demonstrate that the surA, ppiA, ppiD, fkpA and fklB alleles each encode a periplasmic PPIase in the bacterial pathogen Yersinia pseudotuberculosis. Of these, four were purified to homogeneity. Purified SurA, FkpA and FklB, but not PpiD, displayed detectable PPIase activity in vitro. Significantly, only Y. pseudotuberculosis lacking surA caused drastic alterations to the outer membrane protein profile and FA (fatty acid) composition. They also exhibited aberrant cellular morphology, leaking LPS (lipopolysaccharide) into the extracellular environment. The SurA PPIase is therefore most critical for maintaining Y. pseudotuberculosis envelope integrity during routine culturing. On the other hand, bacteria lacking either surA or all of the genes ppiA, ppiD, fkpA and fklB were sensitive to hydrogen peroxide and were attenuated in mice infections. Thus Y. pseudotuberculosis exhibits both SurA-dependent and -independent requirements for periplasmic PPIase activity to ensure in vivo survival and a full virulence effect in a mammalian host.  相似文献   

17.
CD2 mediates T cell adhesion via its ectodomain and signal transduction utilizing its 117-amino acid cytoplasmic tail. Here we show that a significant fraction of human CD2 molecules is inducibly recruited into lipid rafts upon CD2 cross-linking by a specific pair of mitogenic anti-CD2 monoclonal antibodies (anti-T11(2) + anti-T11(3)) or during cellular conjugate formation by CD58, the physiologic ligand expressed on antigen-presenting cells. Translocation to lipid microdomains is independent of the T cell receptor (TCR) and, unlike inducible TCR-raft association, requires no tyrosine phosphorylation. Structural integrity of rafts is necessary for CD2-stimulated elevation of intracellular free calcium and tyrosine phosphorylation of cellular substrates. Whereas murine CD2 contains two membrane-proximal intracellular cysteines, partitioning CD2 into cholesterol-rich lipid rafts constitutively, human CD2 has no cytoplasmic cysteines. Mapping studies using CD2 point mutation, deletion, and chimeric molecules suggest that conformational change in the CD2 ectodomain participates in inducible raft association and excludes the membrane-proximal N-linked glycans, the transmembrane segment, and the CD2 cytoplasmic region (residues 8-117) as necessary for translocation. Translocation of CD2 into lipid rafts may reorganize the membrane into an activation-ready state prior to TCR engagement by a peptide associated with a major histocompatibility complex molecule, accounting for synergistic T cell stimulation by CD2 and the TCR.  相似文献   

18.
The murine T lymphoma line, LBRM-33 1A5, requires synergistic signals delivered by phytohemagglutinin (PHA) and interleukin 1 (IL1) for activation to high level interleukin 2 production. The activation signals provided by PHA and IL1 were replaced by the Ca2+ ionophore, ionomycin, and the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), respectively. These observations supported a two-signal model for T cell activation involving increases in intracellular Ca2+ concentration ([Ca2+]i) (signal 1) and activation of protein kinase C (signal 2) as necessary and sufficient events. However, biochemical analyses revealed that additional signals were involved in the activation of LBRM-33 cells by both receptor-dependent and -independent mediators. Both signal 1-type mediators, PHA and ionomycin, exerted pleiotropic effects at the concentrations required for synergy with signal 2-type mediators (IL1, TPA). Within 1-2 min of addition, PHA stimulated phospholipid turnover, including hydrolysis of phosphatidylinositol 4,5-bisphosphate, Ca2+ mobilization, and protein kinase C activation. The [Ca2+]i increase induced by PHA was due to influx from both intracellular and extracellular Ca2+ pools. Similarly, ionomycin increased phospholipid turnover, [Ca2+]i, and directly affected protein kinase C activity in LBRM-33 cells. In contrast, the signal 2-type mediators, TPA and IL1, appeared to act by distinct intracellular mechanisms. TPA induced a protracted association of cellular protein kinase C with the plasma membrane, consistent with the two-signal activation model. Furthermore, acute TPA treatment inhibited PHA-stimulated inositol phosphate release and Ca2+ mobilization, suggesting that this mediator partially antagonized signal 1 delivery. IL1, in contrast, neither activated protein kinase C directly nor did it positively modulate the coupling of signal 1-type mediators to [Ca2+]i or protein kinase C via the phosphoinositide pathway. The intracellular signal delivered by IL1 is, therefore, generated through a mechanism distinct from or distal to the activation of protein kinase C. These studies indicate that the two-signal hypothesis, in its simplest form, is inadequate to explain the signals required for the initiation of IL1-dependent T cell activation.  相似文献   

19.
Endothelial cell oxidative stress and signal transduction   总被引:3,自引:0,他引:3  
  相似文献   

20.
Since the discovery of ubiquitin-dependent protein degradation almost two decades ago, great strides have been made towards a detailed understanding of the biochemistry of this process (reviewed in [1–3]). It was, however, only in recent years that the physiological role of the ubiquitin system in signal transduction and the regulation of several cell functions started to be appreciated and experimentally addressed. As with other principal mechanisms of signal transduction, such as phosphorylation or GTP hydrolysis, much of the information regarding the role of the ubiquitin system as a component of cell regulation and signaling cascades, was gained in studies of transformation and the control of cell growth. It seems, however, that ubiquitin-dependent proteolysis, and possibly other processes that are controlled by protein ubiquitination, play a role in many aspects of cellular function from the control of differentiation to intracellular trafficking [1,3,4]. Here we will review some of the results that implicate ubiquitin-dependent proteolysis in the control of cell growth and that indicate how perturbations of ubiquitin-dependent degradation of oncogene and tumor suppressor gene products may contribute to cell transformation and oncogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号