首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
'Illegitimate' recombination events in polyoma-transformed rat cells   总被引:2,自引:0,他引:2  
R Yarom  A Lapidot  A Neer  N Baran  H Manor 《Gene》1987,59(1):87-98
In the LPT line of polyoma (Py)-transformed rat cells, amplification of the integrated viral DNA and of cell nucleotide sequences flanking the viral integration site, can be induced either spontaneously or by treatment with carcinogens. We show here that the amplified DNA includes interspersed viral and cellular sequences generated by 'illegitimate' recombination events. Genomic libraries have been prepared in phage lambda vectors from LPT cells treated with the inducing agent mitomycin C and from untreated LPT cells. Four phages, including viral-cell DNA recombinants, have been isolated from these libraries. Sequencing through the recombination sites revealed the following characteristics: (i) The crossover points map at four different positions in the viral DNA and at four different positions in the flanking cell DNA. (ii) There are very short homologous sequences of 1, 2, or 4 bp, at the recombination sites. (iii) Aside from the exchanges between the viral and the cellular DNA, no further rearrangements occurred around the new viral-cellular DNA junctions. (iv) Next to the recombination sites, there are blocks of homopurine-homopyrimidine sequences, which may assume a structure that differs from the Watson-Crick double helix. (v) Clustered homologous sequence blocks of up to 10 bp are present less than 200 bp away from the recombination sites. These homologies are not in register. Based on these results, we propose a model that may account for these recombination events and, more generally, for recombination events that occur during gene amplification in mammalian cells.  相似文献   

3.
The organization of the viral DNA sequences in 15 adenovirus-transformed cell lines was analyzed by the Southern blotting procedure. The site of adenovirus integration in the cellular genome was found not to be unique, and the viral DNA sequences involved in integration were not confined to a specific region of the adenovirus genome. Several cell lines showed simple integration patterns that demonstrated the presence of large continuous stretches of viral DNA. In four cell lines, containing sequences from both molecular ends of the viral genome, the left- and right-hand-terminal sequences appeared to be linked to each other.  相似文献   

4.
5.
Mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses, which produce an altered plaque phenotype as a result of reduced numbers of viral occlusions in infected cells, were isolated after passage in Trichoplusia ni (TN-368) cells. These mutants, termed FP (few-polyhedra) mutants, had acquired cell DNA sequences ranging from 0.8 to 2.8 kilobase pairs in size. The insertions of cell DNA occurred in a specific region between 35.0 and 37.7 map units of the A. californica viral genome. A cloned viral fragment containing one of the host DNA inserts was homologous to host DNA inserts in two other mutant viruses and to dispersed, repetitious sequences in T. ni cell DNA. Most of the homology between the cloned insert and cell DNA was contained within a 1,280-base-pair AluI fragment. Marker rescue studies and analysis of infected-cell-specific proteins suggested that the insertion of cell DNA into the viral genomes resulted in the FP plaque phenotype, possibly through the inactivation of a 25,000-molecular-weight protein.  相似文献   

6.
We constructed insertion mutants of herpes simplex virus type 1 that contained a duplication of DNA sequences from the BamHI-L fragment (map units 0.706 to 0.744), which is located in the unique region of the L component (UL) of the herpes simplex virus type 1 genome. The second copy of the BamHI-L sequence was inserted in inverted orientation into the viral thymidine kinase gene (map units 0.30 to 0.32), also located within UL. A significant fraction of the progeny produced by these insertion mutants had genomes with rearranged DNA sequences, presumably resulting from intramolecular or intermolecular recombination between the BamHI-L sequences at the two different genomic locations. The rearranged genomes either had an inversion of the DNA sequence flanked by the duplication or were recombinant molecules in which different regions of the genome had been duplicated and deleted. Genomic rearrangements similar to those described here have been reported previously but only for herpes simplex virus insertion mutants containing an extra copy of the repetitive a sequence. Such rearrangements have not been reported for insertion mutants that contain duplications of herpes simplex virus DNA sequences from largely unique regions of the genome. The implications of these results are discussed.  相似文献   

7.
It was demonstrated for the first time that filamentous bacteriophage Cflt, which contains single-stranded DNA, can incorporate its genome into that of its host. Evidence in support of the incorporation was obtained from a Southern blot hybridization analysis of DNA isolated from Cflt-lysogenized cells. DNAs from different Cflt-lysogenized cells were purified, and the integration patterns were compared. Because all integration patterns were identical and only one fragment in Cflt replicative-form DNA was missing, it appears that the integration was site specific. Only one complement of viral DNA was integrated per host chromosome. To determine the attachment site on the viral DNA, the physical map of EcoRI, XhoI, SstII, and BglII on Cflt DNA was constructed. Based on this physical map and a Southern blot hybridization analysis of lysogen DNA with these restriction endonucleases, we demonstrated that DNA sequences from all regions of the Cflt genome were represented in the integrated viral sequences. The attachment site on the viral genome was located at 69.2 to 73.8 min on the Cflt DNA.  相似文献   

8.
The nucleotide sequence of the long terminal repeat (LTR) of three murine retroviral DNAs has been determined. The data indicate that the U5 region (sequences originating from the 5' end of the genome) of various LTRs is more conserved than the U3 region (sequences from the 3' end of the genome). The location and sequence of the control elements such as the 5' cap, "TATA-like" sequences, "CCAAT-box," and presumptive polyadenylic acid addition signal AATAAA in the various LTRs are nearly identical. Some murine retroviral DNAs contain a duplication of sequences within the LTR ranging in size from 58 to 100 base pairs. A variant of molecularly cloned Moloney murine sarcoma virus DNA in which one of the two LTRs integrated into the viral DNA was also analyzed. A 4-base-pair duplication was generated at the site of integration of LTR in the viral DNA. The host-viral junction of two molecularly cloned AKR-murine leukemia virus DNAs (clones 623 and 614) was determined. In the case of AKR-623 DNA, a 3- or 4-base-pair direct repeat of cellular sequences flanking the viral DNA was observed. However, AKR-614 DNA contained a 5-base-pair repeat of cellular sequences. The nucleotide sequence of the preintegration site of AKR-623 DNA revealed that the cellular sequences duplicated during integration are present only once. Finally, a striking homology between the sequences flanking the preintegration site and viral LTRs was observed.  相似文献   

9.
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.  相似文献   

10.
R A Robinson  D J O'Callaghan 《Cell》1983,32(2):569-578
The integration patterns of viral DNA sequences in three hamster embryo cell lines independently derived by transformation with equine herpesvirus type 1 (EHV-1) have been investigated by DNA blot hybridization analyses for the restriction enzymes Eco RI, Bgl II, Xba I and Bam HI with 32P-labeled selected DNAs from a collection of cloned EHV-1 restriction enzyme fragments as probes. These EHV-1-transformed cell lines contained subgenomic portions of the viral genome in an integrated state at multiple sites in the host genome. At least one copy of a viral DNA sequence mapping colinearly from 0.32 to 0.38 map units within the EHV-1 genome was common among these three EHV-1 transformed cell lines. The 0.32–0.38 viral DNA sequence was maintained stably even after 125 cell passages, whereas sequences from other positions in the EHV-1 genome were lost progressively during continued cell passage. The significance of the findings that these oncogenically transformed cell lines harbor a specific region of the EHV-1 genome is discussed with regard to stable maintenance of the oncogenically transformed state.  相似文献   

11.
M S Campo  I R Cameron  M E Rogers 《Cell》1978,15(4):1411-1426
We have analyzed the arrangement of SV40 DNA sequences integrated in human chromosome 7 in two lines of mouse-human somatic cell hybrids: one containing only one human chromosome 7 per cell and the other containing an average of about three. We found that the integration site differs in both the viral and host sequences in the two clones. However, the sites of integration into the several copies of human chromosome 7 of one clone are identical. Each chromosome 7 in both clones carries approximately six viral genomes tandemly linked. Some of these genomes lack about 20% of the DNA from the late region, including the Eco RI site.  相似文献   

12.
Integration of Rous sarcoma virus DNA during transfection   总被引:3,自引:0,他引:3  
We have investigated the organization and integration sites of Rous sarcoma virus (RSV) DNA in NIH 3T3 mouse cells transformed by transfection with unintegrated and integrated donor RSV DNAs. RSV DNAs of different cell lines transformed by unintegrated donor DNA were flanked by different cellular DNA sequences, indicating that RSV DNA integrates at multiple sites during transfection. The RSV genomes of cells transformed by transfection were colinear with unintegrated RSV DNA, except that deletions within the terminal repeat units of RSV DNA were detected in some cell lines. These results suggested that the terminal repeat sequences of RSV DNA did not necessarily provide a specific integration site for viral DNA during transfection. In addition, cell lines transformed by integrated RSV DNAs contained both the RSV genomes and flanking cellular sequences of the parental cell lines, indicating that integration of integrated viral DNA during transfection occurred by recombinational events within flanking cellular DNA sequences rather than at the terminal of viral DNA. Integration of RSV DNA during transfection thus appears to differ from integration of RSV DNA in virus-infected cells, where the terminal repeat units of viral DNA provide a highly specific integration site. Integration of donor DNA during transfection of NIH 3T3 cells instead appears to proceed by a pathway which is nonspecific for both donor and recipient DNA sequences.  相似文献   

13.
G Orend  I Kuhlmann    W Doerfler 《Journal of virology》1991,65(8):4301-4308
The establishment of de novo-generated patterns of DNA methylation is characterized by the gradual spreading of DNA methylation (I. Kuhlmann and W. Doerfler, J. Virol. 47:631-636, 1983; M. Toth, U. Lichtenberg, and W. Doerfler, Proc. Natl. Acad. Sci. USA 86:3728-3732, 1989; M. Toth, U. Müller, and W. Doerfler J. Mol. Biol. 214:673-683, 1990). We have used integrated adenovirus type 12 (Ad12) genomes in hamster tumor cells as a model system to study the mechanism of de novo DNA methylation. Ad12 induces tumors in neonate hamsters, and the viral DNA is integrated into the hamster genome, usually nearly intact and in an orientation that is colinear with that of the virion genome. The integrated Ad12 DNA in the tumor cells is weakly methylated at the 5'-CCGG-3' sequences. These sequences appear to be a reliable indicator for the state of methylation in mammalian DNA. Upon explantation of the tumor cells into culture medium, DNA methylation at 5'-CCGG-3' sequences gradually spreads across the integrated viral genomes with increasing passage numbers of cells in culture. Methylation is reproducibly initiated in the region between 30 and 75 map units on the integrated viral genome and progresses from there in either direction on the genome. Eventually, the genome is strongly methylated, except for the terminal 2 to 5% on either end, which remains hypomethylated. Similar observations have been made with tumor cell lines with different sites of Ad12 DNA integration. In contrast, the levels of DNA methylation do not seem to change after tumor cell explanation in several segments of hamster cell DNA of the unique or repetitive type. Restriction (HpaII) and Southern blot experiments were performed with selected cloned hamster cellular DNA probes. The data suggest that in the integrated foreign DNA, there exist nucleotide sequences or structures or chromatin arrangements that can be preferentially recognized by the system responsible for de novo DNA methylation in mammalian cells.  相似文献   

14.
Hamster cell line HE5 has been established from primary LSH hamster embryo cells by transformation with adenovirus type 2 (Ad2) (1). Each cell contains two to three copies of integrated Ad2 DNA (2, 3). We cloned and sequenced the sites of junction between viral and cellular DNAs. The terminal 10 and 8 nucleotides of Ad2 DNA were deleted at the left and right sites of junction, respectively. The integrated viral DNA had an internal deletion between map units 35 and 82 on the Ad2 genome. At the internal site of deletion, the remaining viral sequences were linked via a GT dinucleotide of unknown origin. From HE5 DNA, the unoccupied sequence corresponding to the site of insertion was also cloned and sequenced. Part of this sequence was shown to be expressed as cytoplasmic RNA in HE5 and primary LSH hamster embryo cells. The viral DNA had been inserted into cellular DNA without deletions, rearrangements or duplications of cellular nucleotides at the site of insertion. Thus, insertion of Ad2 DNA appeared to have been effected by a mechanism different from that of bacteriophage lambda in Escherichia coli and from that of retroviral genomes in vertebrates. It was conceivable that the terminal viral protein (4) was somehow involved in integration either on a linear or a circularized viral DNA molecule.  相似文献   

15.
We have examined the arrangement of integrated avian sarcoma virus (ASV) DNA sequences in several different avian sarcoma virus transformed mammalian cell lines, in independently isolated clones of avian sarcoma virus transformed rat liver cells, and in morphologically normal revertants of avian sarcoma virus transformed rat embryo cells. By using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled avian sarcoma virus complementary DNA probes, we have compared the restriction enzyme cleavage maps of integrated viral DNA and adjacent cellular DNA sequences in four different mouse and rat cell lines transformed with either Bratislava 77 or Schmidt-Ruppin strains of avian sarcoma virus. The results of these experiments indicated that the integrated viral DNA resided at a different site within the host cell genome in each transformed cell line. A similar analysis of several independently derived clones of Schmidt-Ruppin transformed rat liver cells also revealed that each clone contained a unique cellular site for the integration of proviral DNA. Examination of several morphologically normal revertants and spontaneous retransformants of Schmidt-Ruppin transformed rat embryo cells revealed that the internal arrangement and cellular integration site of viral DNA sequences was identical with that of the transformed parent cell line. The loss of the transformed phenotype in these revertant cell lines, therefore, does not appear to be the result of rearrangement or deletions either within the viral genome or in adjacent cellular DNA sequences. The data presented support a model for ASV proviral DNA integration in which recombination can occur at multiple sites within the mammalian cell genome. The integration and maintenance of at least one complete copy of the viral genome appear to be required for continuous expression of the transformed phenotype in mammalian cells.  相似文献   

16.
The polyoma virus (Py) transformed cell line 7axB, selected by in vivo passage of an in vitro transformed cell, contains an integrated tandem array of 2.4 genomes and produces the large, middle, and small Py T-antigen species, with molecular weights of 100,000, 55,000, and 22,000, respectively (Hayday et al., J. Virol. 44:67-77, 1982; Lania et al., Cold Spring Harbor Symp. Quant. Biol. 44:597-603, 1980). The integrated viral and adjacent host DNA sequences have been molecularly cloned as three EcoRI fragments (Hayday et al.). One of these fragments (7B-M), derived from within the tandem viral sequences, is equivalent to an EcoRI viral linear molecule. Fragment 7B-M has been found to be transformation competent but incapable of producing infectious virus after DNA transfection (Hayday et al.). By constructing chimerae between 7B-M and Py DNA and by direct DNA sequencing, the mutation responsible for the loss of infectivity has been located to a single base change (adenine to guanine) at nucleotide 2503. This results in a conversion of an aspartic acid to a glycine in the C-terminal region of the Py large T-antigen but does not appear to affect the binding of the Py large T-antigen to Py DNA at the putative DNA replication and autoregulation binding sites. The mutation is located within a 21-amino acid homology region shared by the simian virus 40 large T-antigen (Friedmann et al., Cell 17:715-724, 1979). These results suggest that the mutation in the 7axB large T-antigen may be involved in the active site of the protein for DNA replication.  相似文献   

17.
18.
Deletion mutants within the Py DNA region between the replication origin and the beginning of late protein coding sequences have been constructed and analysed for viability, early gene expression and viral DNA replication. Assay of replicative competence was facilitated by the use of Py transformed mouse cells (COP lines) which express functional large T-protein but contain no free viral DNA. Viable mutants defined three new nonessential regions of the genome. Certain deletions spanning the PvuII site at nt 5130 (67.4 mu) were unable to express early genes and had a cis-acting defect in DNA replication. Other mutants had intermediate phenotypes. Relevance of these results to eucaryotic "enhancer" elements is discussed.  相似文献   

19.
The genome of human papovavirus BKV.   总被引:99,自引:0,他引:99  
I Seif  G Khoury  R Dhar 《Cell》1979,18(4):963-977
The complete DNA sequence of human papovavirus BKV(Dun), consisting of 5153 nucleotide pairs, is presented. We describe the segments of the genome which correspond to the replication origin, the tandem repeated sequences, the 5' and 3' ends of the mRNAs, the splice sites, the early and late viral proteins and the putative viral polypeptides. These BKV DNA sequences are compared with analogous regions in the SV40 and Py virus genomes in an attempt to localize viral functions for lytic growth and transformation.  相似文献   

20.
After exposure of mouse embryo cells to the early temperature-sensitive mutant tsP155 of polyoma virus (Py), a transformed cell line (Cyp line) that can be readily induced to synthesize Py by transfer to 33 degrees C was isolated at 39 degrees C (7). Virus production and synthesis of free viral DNA occurring after temperature shiftdown or superinfection with wild-type Py or both were studied in several clonal isolates of the Cyp cell line. Measurements of virus yields indicated that, although some could be induced more effectively than others, all cell clones behaved as highly permissive when subjected to superinfection. We analyzed the origin of free viral DNA accumulating in the superinfected cultures, taking advantage of (i) the unique physical properties of the low-molecular-weight DNA which, in the case of one of the Cyp clones, accumulates during temperature shiftdown, and (ii) the differences between resident and superinfecting viral genomes in their susceptibilities towards restriction endonucleases. At 33 degrees C, both viral genomes were found to accumulate in all clones studied whereas in the case of the clones with lower inducibility, the replication of the resident genome appeared to be enhanced by superinfection. At 39 degrees C, however, accumulation of the superinfecting genome was not accompanied by that of the resident genome, unless it had already been initiated before superinfection. These findings demonstrate that, when routinely cultivated at 39 degrees C, Cyp cells contain few viral DNA molecules readily available for autonomous replication and that, upon transfer to 33 degrees C, therefore, excision must first take place before the resident genome can accumulate as free viral DNA. Our findings also suggest that, unlike the P155 gene product provided by the resident viral genome upon induction, the allelic gene product supplied by the superinfecting genome may be less effective in triggering excision than in promoting replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号