首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ultraviolet A (UVA) radiation represents more than 90% of the UV spectrum reaching Earth's surface. Exposure to UV light, especially the UVA part, induces the formation of photoexcited states of cellular photosensitizers with subsequent generation of reactive oxygen species (ROS) leading to damages to membrane lipids, proteins and nucleic acids. Although UVA, unlike UVC and UVB, is poorly absorbed by DNA, it inhibits cell cycle progression, especially during S-phase. In the present study, we examined the role of the DNA damage checkpoint response in UVA-induced inhibition of DNA replication. We provide evidence that UVA delays S-phase in a dose dependent manner and that UVA-irradiated S-phase cells accumulate in G2/M. We show that upon UVA irradiation ATM-, ATR- and p38-dependent signalling pathways are activated, and that Chk1 phosphorylation is ATR/Hus1 dependent while Chk2 phosphorylation is ATM dependent. To assess for a role of these pathways in UVA-induced inhibition of DNA replication, we investigated (i) cell cycle progression of BrdU labelled S-phase cells by flow cytometry and (ii) incorporation of [methyl-(3)H]thymidine, as a marker of DNA replication, in ATM, ATR and p38 proficient and deficient cells. We demonstrate that none of these pathways is required to delay DNA replication in response to UVA, thus ruling out a role of the canonical S-phase checkpoint response in this process. On the contrary, scavenging of UVA-induced reactive oxygen species (ROS) by the antioxidant N-acetyl-l-cystein or depletion of vitamins during UVA exposure significantly restores DNA synthesis. We propose that inhibition of DNA replication is due to impaired replication fork progression, rather as a consequence of UVA-induced oxidative damage to protein than to DNA.  相似文献   

2.
We discovered the directly acting mutagenicity of the tobacco-specific nitrosamine, 4-(N-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), with UVA light (320-400nm) in Ames bacteria and phage M13mp2 in the absence of metabolic activation. We have investigated the spectrum of mutations caused by UVA-activated NNK. The majority (57%) of induced sequence changes were comprised of GC to CG, GC to TA and GC to AT. This suggested that modification of guanine residues was responsible for these mutations. Hence, we explored the formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) and O(6)-methylguanine (O(6)meG) in the DNA. When calf thymus DNA was treated with NNK and UVA, the amount of 8-oxodG/dG and O(6)meG/G in the DNA increased up to 20-fold and 100-fold, respectively, compared with the untreated control. DNA strand breaks were observed following NNK and UVA treatment, and the strand breaks were suppressed in the presence of scavengers for oxygen and NO radical. The formation of NO was also observed in NNK solutions irradiated with UVA. We analyzed the photodynamic spectrum of mutation induction, 8-oxodG formation and NO formation using monochromatic radiation. The patterns of the action spectra were comparable to the absorption spectrum of NNK. We conclude that NNK may act as a photosensitizer in response to UVA to produce NO and other oxidative and alkylative intermediates following the formation of 8-oxodG and O(6)meG in DNA, which may lead to mutations and DNA strand breaks.  相似文献   

3.
紫外A(UVA,320 nm-400 nm)诱发的脂质过氧化反应是通过活性氧(ROS)介导的。在UVA照射之后,单线态氧(1O2)和超氧阴离子(O2-.)是细胞内最初产生的ROS,它们进一步生成过氧化氢(H2O2),羟自由基(.OH)等其它自由基。为了探讨UVA照射后最早生成的1O2和O2-.与细胞氧化损伤后果的关系,我们采用一种特异性检测1O2和O2-.的高灵敏度化学发光探针MCLA(2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimid-azo[1,2-α]pyrazin-3-one hydrochloride)检测人外周血淋巴细胞经UVA照射后的化学发光变化。发现不同剂量UVA照射后,细胞MCLA化学发光变化和MDA浓度变化一致。结果表明UVA照射后1O2和O2-.的水平与由此引发的脂质过氧化损伤存在正相关关系。因此,MCLA化学发光方法可望作为一种检测UVA诱发脂质过氧化水平的简单快速方法。  相似文献   

4.
Epidemiological studies have demonstrated an inverse relationship between selenium (Se) intake and cancer incidence and/or mortality. However, the molecular mechanisms underlying the cancer chemopreventive activity of Se compounds remain largely unknown. The objective of this study was to investigate the effect of low doses of Se on the stimulation of DNA repair systems in response to four different qualities of DNA damage. P53-proficient LNCaP human prostate adenocarcinoma cells were grown either untreated or in the presence of low concentrations of two Se compounds (30° nM sodium selenite, or 10 μM selenomethionine) and exposed to UVA, H2O2, methylmethane sulfonate (MMS) or UVC. Cell viability as well as DNA damage induction and repair were evaluated by the alkaline Comet assay. Overall, Se was shown to be a very potent protector against cell toxicity and genotoxicity induced by oxidative stress (UVA or H2O2) but not from the agents that induce other types of deleterious lesions (MMS or UVC). Furthermore, Se-treated cells exhibited increased oxidative DNA repair activity, indicating a novel mechanism of Se action. Therefore, the benefits of Se could be explained by a combination of antioxidant activity, the reduction in DNA damage and the enhancement of oxidative DNA repair capacity.  相似文献   

5.
A survey of the main available chemical and biochemical postlabeling assays for measuring oxidative DNA damage is reported. Two main approaches, radio and fluorescent postlabeling, have been used in order to reach a high level of sensitivity of detection. This is required for the measurement of DNA damage within cells and tissues upon exposure to agents of oxidative stress. Most of the methods are based on liquid chromatographic separation of defined DNA modifications following either acidic hydrolysis or enzymic digestion of DNA. In a subsequent step, the isolated base or sugar damages are either radiolabeled or made fluorescent by chemical or enzymatic reactions. Emphasis is placed on the recently developed high performance liquid chromatographic 32P-postlabeling assay, which allows the specific and sensitive measurement of various base damages including adenine N-1 oxide and 5-hydroxymethyluracil at the level of one modification per 10(7) normal bases in a sample size of 1 microgram of DNA. Examples of application of radioactive postlabeling to the measurement of DNA base damage following exposure of human cells to oxidizing agents including hydrogen peroxide and UVA radiation are provided.  相似文献   

6.
The objective of this study is to investigate if 8-methoxy-psoralen (8-MOP) plus ultraviolet A (UVA) radiation (PUVA) induces oxidative DNA damage. When calf thymus DNA was incubated with 8-MOP and irradiated with UVA (335-400 nm), the level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) was substantially increased by approximately 6-fold. Formation of 8-OHdG proportionally correlated with both UVA fluence and 8-MOP concentrations. Human epidermoid carcinoma cells were incubated with 10 microg 8-MOP per milliliter, followed by irradiation of 25 kJ/m2 UVA. The level of 8-OHdG increased by nearly 3-fold in PUVA-treated cells compared to 8-MOP and UVA controls. The formation of 8-OHdG correlated with DNA fragmentation as determined by spectrofluorometry. To investigate the reactive oxygen species (ROS) involved in PUVA-induced oxidative DNA damage, less or more specific ROS quenchers were added to DNA solution prior to PUVA treatment. The results showed that only sodium azide and genistein significantly quenched PUVA-induced 8-OHdG, whereas catalase, superoxide dismutase, and mannitol exhibited no effect. The quencher study with cultured cells indicated that N-acetyl-cysteine and genistein protected oxidative DNA damage as well as DNA fragmentation by PUVA treatment. Our studies show that PUVA treatment is able to induce the formation of 8-OHdG in purified DNA and cultured cells and suggest that singlet oxygen is the principle reactive oxygen species involved in oxidative DNA damage by PUVA treatment.  相似文献   

7.
Telomere shortening is associated with cellular senescence. We investigated whether UVA, which contributes to photoaging, accelerates telomere shortening in human cultured cells. The terminal restriction fragment (TRF) from WI-38 fibroblasts irradiated with UVA (365-nm light) decreased with increasing irradiation dose. Furthermore, UVA irradiation dose-dependently increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in both WI-38 fibroblasts and HL-60 cells. To clarify the mechanism of the acceleration of telomere shortening, we investigated site-specific DNA damage induced by UVA irradiation in the presence of endogenous photosensitizers using (32)P 5'-end-labeled DNA fragments containing the telomeric oligonucleotide (TTAGGG)(4). UVA irradiation with riboflavin induced 8-oxodG formation in the DNA fragments containing telomeric sequence, and Fpg protein treatment led to chain cleavages at the central guanine of 5'-GGG-3' in telomere sequence. The amount of 8-oxodG formation in DNA fragment containing telomere sequence [5'-CGC(TTAGGG)(7)CGC-3'] was approximately 5 times more than that in DNA fragment containing nontelomere sequence [5'-CGC(TGTGAG)(7)CGC-3']. Catalase did not inhibit this oxidative DNA damage, indicating no or little participation of H(2)O(2) in DNA damage. These results indicate that the photoexcited endogenous photosensitizer specifically oxidizes the central guanine of 5'-GGG-3' in telomere sequence to produce 8-oxodG probably through an electron-transfer reaction. It is concluded that the site-specific damage in telomere sequence induced by UVA irradiation may participate in the increase of telomere shortening rate.  相似文献   

8.
Posttranslational modification of PCNA by ubiquitin plays an important role in coordinating the processes of DNA damage tolerance during DNA replication. The monoubiquitination of PCNA was shown to facilitate the switch between the replicative DNA polymerase with the low-fidelity polymerase eta (η) to bypass UV-induced DNA lesions during replication. Here, we show that in response to oxidative stress, PCNA becomes transiently monoubiquitinated in an?S phase- and USP1-independent manner. Moreover, Polη interacts with mUb-PCNA at sites of oxidative DNA damage via its PCNA-binding and ubiquitin-binding motifs. Strikingly, while functional base excision repair is not required for this modification of PCNA or Polη recruitment to chromatin, the?presence of hMsh2-hMsh6 is indispensable. Our findings highlight an alternative pathway in response to oxidative DNA damage that may coordinate the removal of oxidatively induced clustered DNA lesions and could explain the high levels of oxidized DNA lesions in MSH2-deficient cells.  相似文献   

9.
Reeves JF  Davies SJ  Dodd NJ  Jha AN 《Mutation research》2008,640(1-2):113-122
TiO(2) nanoparticles (< 100 nm diameter) have been reported to cause oxidative stress related effects, including inflammation, cytotoxicity and genomic instability, either alone or in the presence of UVA irradiation in mammalian studies. Despite the fact that the aquatic environment is often the ultimate recipient of all contaminants there is a paucity of data pertaining to the potential detrimental effects of nanoparticles on aquatic organisms. Therefore, these investigations aimed to evaluate the potential cytotoxic and genotoxic effects of TiO(2) nanoparticles on goldfish skin cells (GFSk-S1), either alone or in combination with UVA. Whilst neutral red retention (NRR) assay (a measure of lysosomal membrane integrity) was used to evaluate cell viability, a modified Comet assay using bacterial lesion-specific repair endonucleases (Endo-III, Fpg) was employed to specifically target oxidative DNA damage. Additionally, electron spin resonance (ESR) studies with different spin traps were carried out for qualitative analysis of free radical generation. For cell viability, TiO(2) alone (0.1-1000 microg ml(-1)) had little effect whereas co-exposure with UVA (0.5-2.0 kJm(-2)) caused a significant dose-dependent decrease which was dependent on both the concentration of TiO(2) and the dose of UVA administered. For the Comet assay, doses of 1, 10 and 100 microg ml(-1) in the absence of UVA caused elevated levels of Fpg-sensitive sites, indicating the oxidation of purine DNA bases (i.e. guanine) by TiO(2). UVA irradiation of TiO(2)-treated cells caused further increases in DNA damage. ESR studies revealed that the observed toxic effects of nanoparticulate TiO(2) were most likely due to hydroxyl radical (OH) formation.  相似文献   

10.
The novel amphiphilic vitamin C derivative disodium isostearyl 2-O-L-ascorbyl phosphate (VCP-IS-2Na), which has a C(18) alkyl chain attached to the stable ascorbate derivative sodium L-ascorbic acid 2-phosphate (VCP-Na), was evaluated for reduction of cell damage induced by oxidative stress, ultraviolet A (UVA), ultraviolet B (UVB), and H(2)O(2); stimulation of collagen synthesis against UVA irradiation; and inhibition of matrix metalloproteinase-1 (MMP-1) activity induced by UVA in human normal dermal fibroblasts. VCP-IS-2Na pretreatment resulted in significant protection against cell damage induced by UVB, UVA, and H(2)O(2). The amount of type I collagen following UVA irradiation was increased by treatment with VCP-IS-2Na in a concentration-dependent manner. These effects of VCP-IS-2Na were superior to those of L-ascorbic acid (vitamin C, VC) and VCP-Na. On the other hand, VCP-IS-2Na suppressed 65% of the excess MMP-1 irradiated UVA, and VC and VCP-Na slightly suppressed it.  相似文献   

11.
The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered.  相似文献   

12.
Human DNA polymerase iota (poliota) is a unique member of the Y-family of specialised polymerases that displays a 5'deoxyribose phosphate (dRP) lyase activity. Although poliota is well conserved in higher eukaryotes, its role in mammalian cells remains unclear. To investigate the biological importance of poliota in human cells, we generated fibroblasts stably downregulating poliota (MRC5-pol iota(KD)) and examined their response to several types of DNA-damaging agents. We show that cell lines downregulating poliota exhibit hypersensitivity to DNA damage induced by hydrogen peroxide (H(2)O(2)) or menadione but not to ethylmethane sulphonate (EMS), UVC or UVA. Interestingly, extracts from cells downregulating poliota show reduced base excision repair (BER) activity. In addition, poliota binds to chromatin after treatment of cells with H(2)O(2) and interacts with the BER factor XRCC1. Finally, green fluorescent protein-tagged poliota accumulates at the sites of oxidative DNA damage in living cells. This recruitment is partially mediated by its dRP lyase domain and ubiquitin-binding domains. These data reveal a novel role of human poliota in protecting cells from oxidative damage.  相似文献   

13.
Besaratinia A  Synold TW  Xi B  Pfeifer GP 《Biochemistry》2004,43(25):8169-8177
Ultraviolet A (UVA) radiation received from the sun and from the widespread use of tanning beds by populations residing in areas of northern latitude represents a potential risk factor for human health. The genotoxic and cancer-causing effects of UVA have remained controversial. A mutagenic role for UVA based on DNA damage formation by reactive oxygen species as well as by generation of photoproducts such as cyclobutane pyrimidine dimers (CPDs) has been suggested. Here, we investigated the mutagenicity of UVA in relation to its DNA damaging effects in transgenic Big Blue mouse embryonic fibroblasts. We determined the formation of a typical oxidative DNA lesion, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and of CPDs, as well as quantified the induction of mutations in the cII transgene in cells irradiated with a 2000 W UVA lamp. UVA irradiation at a dose of 18 J/cm(2) produced significant levels of 8-oxo-dG in DNA (P < 0.03) but did not yield detectable CPDs. UVA irradiation also increased the cII mutant frequency almost 5-fold over background (P < 0.01) while showing moderate cytotoxicity (70% cell viability). UVA-induced mutations were characterized by statistically significant increases in G-to-T transversions and small tandem base deletions (P = 0.0075, P = 0.008, respectively) relative to spontaneously derived mutations. This mutational spectrum differs from those previously reported for UVA in other test systems; however, it corresponds well with the known spectrum of mutations established for oxidative base lesions such as 8-oxo-dG. We conclude that UVA has the potential to trigger carcinogenesis owing to its mutagenic effects mediated through oxidative DNA damage.  相似文献   

14.
The DNA of patients taking immunosuppressive and anti-inflammatory thiopurines contains 6-thioguanine (6-TG) and their skin is hypersensitive to ultraviolet A (UVA) radiation. DNA 6-TG absorbs UVA and generates reactive oxygen species that damage DNA and proteins. Here, we show that the DNA damage includes covalent DNA-protein crosslinks. An oligonucleotide containing a single 6-TG is photochemically crosslinked to cysteine-containing oligopeptides by low doses of UVA. Crosslinking is significantly more efficient if guanine sulphonate (G(SO3))--an oxidized 6-TG and a previously identified UVA photoproduct--replaces 6-TG, suggesting that G(SO3) is an important reaction intermediate. Crosslinking occurs via oligopeptide sulphydryl and free amino groups. The oligonucleotide-oligopeptide adducts are heat stable but are partially reversed by reducing treatments. UVA irradiation of human cells containing DNA 6-TG induces extensive heat- and reducing agent-resistant covalent DNA-protein crosslinks and diminishes the recovery of some DNA repair and replication proteins from nuclear extracts. DNA-protein crosslinked material has an altered buoyant density and can be purified by banding in cesium chloride (CsCl) gradients. PCNA, the MSH2 mismatch repair protein and the XPA nucleotide excision repair (NER) factor are among the proteins detectable in the DNA-crosslinked material. These findings suggest that the 6-TG/UVA combination might compromise DNA repair by sequestering essential proteins.  相似文献   

15.
Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is essential for both DNA replication and repair. PCNA is required in the resynthesis step of nucleotide excision repair (NER). After UV irradiation, PCNA translocates into an insoluble protein complex, most likely associated with the nuclear matrix. It has not previously been investigated in vivo whether PCNA complex formation also takes place after oxidative stress. In this study, we have examined the involvement of PCNA in the repair of oxidative DNA damage. PCNA complex formation was studied in normal human cells after treatment with hydrogen peroxide, which generates a variety of oxidative DNA lesions. PCNA was detected by two assays, immunofluorescence and western blot analyses. We observed that PCNA redistributes from a soluble to a DNA-bound form during the repair of oxidative DNA damage. PCNA complex formation was analyzed in two human natural mutant cell lines defective in DNA repair: xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). XP-A cells are defective in overall genome NER while CS-B cells are defective only in the preferential repair of active genes. Immunofluorescent detection of PCNA complex formation was similar in normal and XP-A cells, but was reduced in CS-B cells. Consistent with this observation, western blot analysis in CS-B cells showed a reduction in the ratio of PCNA relocated as compared to normal and XP-A cells. The efficient PCNA complex formation observed in XP-A cells following oxidative damage suggests that formation of PCNA-dependent repair foci may not require the XPA gene product. The reduced PCNA complex formation observed in CS-B cells suggests that these cells are defective in the processing of oxidative DNA damage.  相似文献   

16.
UVA irradiation induces L-isoaspartyl formation in melanoma cell proteins.   总被引:1,自引:0,他引:1  
It has been reported that UVA effects are partly mediated by production of reactive oxygen species. Moreover, oxidative stress increases protein damage, involving the occurrence of isoaspartyl residues, a product of protein deamidation/isomerization reactions. This work was undertaken in order to study the effects of UVA irradiation, mediated by oxidation, on sensitive protein targets. Melanoma cells exposed to UVA rays have been chosen as a model for monitoring the occurrence of L-isoaspartyl sites. A dramatic increase of these abnormal residues, specifically recognized and methylated by the enzyme L-isoaspartate(D-aspartate) O-methyltransferase (PCMT; EC 2.1.1.77), can be detected after exposure of M14 cells to raising doses of UVA. The effect of UVA on NO and TBARS accumulation, as well as on DNA fragmentation, has also been investigated. NO formation parallels the increase in isoaspartyl formation, while lipid peroxidation occurs only at the highest UVA doses. No DNA fragmentation has been detected under the employed experimental conditions. These results, as a whole, indicate that protein damages are one of the early events on UVA-induced cell injury. The endogenous activity of PCMT remains remarkably stable under UVA treatment, suggesting that this enzyme might play a crucial role in the repair and/or disposal of damaged proteins in UVA-irradiated cells.  相似文献   

17.
Ultraviolet A (UVA) radiation is implicated in the etiology of human skin cancer. However, the underlying mechanism of carcinogenicity for UVA is not fully delineated. A mutagenic role for UVA has been suggested, which involves activation of endogenous photosensitizers generating oxidative DNA damage. We investigated the mutagenicity of UVA alone and in combination with delta-aminolevulinic acid (delta-ALA), a precursor of the intracellular photosensitizers porphyrins, in transgenic Big Blue mouse embryonic fibroblasts. A significant generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), a typical promutagenic oxidative DNA lesion, was observed in cells treated with a combination of delta-ALA (1 mM) and UVA (0.06 J/cm(2)) as quantified by high-pressure liquid chromatography-tandem mass spectrometry (p < 0.001; relative to the control). The steady-state level of 8-oxo-dG, however, remained unchanged in cells irradiated with UVA or treated with delta-ALA alone. Other photolesions including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts were not detectable in cells treated with delta-ALA and/or irradiated with UVA as determined by terminal transferase-dependent polymerase chain reaction assay. Mutation analyses of the cII transgene in cells treated with a combination of delta-ALA and UVA showed an approximately 3-fold increase in mutant frequency relative to the control (p < 0.008), as well as a unique induced mutation spectrum as established by DNA sequence analysis (p < 0.005; 95% CI, 0.002-0.009). No mutagenic effects were observed in cells irradiated with UVA or treated with delta-ALA alone. The spectrum of mutations produced by delta-ALA plus UVA was characterized by a significantly increased frequency of G --> T transversions (p < 0.0003; relative to the control), which are the hallmark mutations induced by 8-oxo-dG. Notably, the 8-oxo-dG-mediated mutagenicity of UVA plus delta-ALA is similar to that established previously for UVA alone at a mutagenic dose of 18 J/cm(2). We conclude that, in the presence of exogenous photosensitizers, UVA at a nonmutagenic dose induces mutations through the same mechanism as does a mutagenic dose of UVA per se.  相似文献   

18.
Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, P<0.001). We show that if melanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (P<0.001), providing evidence for the dual roles of melanin.  相似文献   

19.
To evaluate the effects of UV radiation on the expression of DNA replication‐related genes in phytoplankton, the mRNA levels of DNA polymerase α and proliferating cell nuclear antigen (PCNA) in a marine diatom, Skeletonema costatum (Greville) Cleve, were studied using the methods of real‐time quantitative PCR. Treating the algal cultures with UVC radiation for 15 min caused severe mortality during the 24‐h period after treatment. A significant amount of thymine dimers was detected in the treated cultures, and the mRNA levels of DNA polymerase α and PCNA increased by as much as 140 and 23 pmol·(g total RNA)?1, respectively, compared with the control experiments. In contrast, massive cell deaths did not occur in cultures receiving UVA/B radiation, and the formation of thymine dimers was inconspicuous. Also, UVA/B did not enhance the expression levels of DNA polymerase α or PCNA. Based on the calculation of biologically effective UV doses, daily exposure to sunlight may increase the expression of DNA polymerase α or PCNA genes in S. costatum by 12% at sea surface. This level of increase does not seriously affect the value of using these genes as growth indicators, but caution is needed in the extrapolation of this conclusion to all phytoplankton species.  相似文献   

20.
The mechanisms of biological effects of 50/60 Hz (power frequency) magnetic fields (MF) are still poorly understood. There are a number of studies indicating that MF affect biochemical processes in which free radicals are involved, such as the biological objects' response to ultraviolet radiation (UVA). Therefore, the present study was aimed to assess the effect of 50 Hz MFs on the oxidative deterioration of DNA in rat lymphocytes irradiated in vitro by UVA. UVA radiation (150 J/m2) was applied for 5 min for all groups and 50 Hz MF (40 microT rms) exposure was applied for some of the groups for 5 or 60 min. The level of DNA damage was assessed using the alkaline comet assay, the fluorescence microscope, and image analysis. It has been found that the 1 h exposure to MF caused an evident increase in all parameters consistent with damaged DNA. This suggest that MF affects the radical pairs generated during the oxidative or enzymatic processes of DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号