首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fsbeta-glucanase) catalyzes the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in beta-D-glucans or lichenan. This is the first report to elucidate the crystal structure of a truncated Fsbeta-glucanase (TFsbeta-glucanase) in complex with beta-1,3-1,4-cellotriose, a major product of the enzyme reaction. The crystal structures, at a resolution of 2.3 angstroms, reveal that the overall fold of TFsbeta-glucanase remains virtually unchanged upon sugar binding. The enzyme accommodates five glucose residues, forming a concave active cleft. The beta-1,3-1,4-cellotriose with subsites -3 to -1 bound to the active cleft of TFsbeta-glucanase with its reducing end subsite -1 close to the key catalytic residues Glu56 and Glu60. All three subsites of the beta-1,3-1,4-cellotriose adopted a relaxed C(1)4 conformation, with a beta-1,3 glycosidic linkage between subsites -2 and -1, and a beta-1,4 glycosidic linkage between subsites -3 and -2. On the basis of the enzyme-product complex structure observed in this study, a catalytic mechanism and substrate binding conformation of the active site of TFsbeta-glucanase is proposed.  相似文献   

2.
Enzymes that hydrolyze insoluble complex polysaccharide structures contain non-catalytic carbohydrate binding modules (CBMS) that play a pivotal role in the action of these enzymes against recalcitrant substrates. Family 6 CBMs (CBM6s) are distinct from other CBM families in that these protein modules contain multiple distinct ligand binding sites, a feature that makes CBM6s particularly appropriate receptors for the beta-1,3-glucan laminarin, which displays an extended U-shaped conformation. To investigate the mechanism by which family 6 CBMs recognize laminarin, we report the biochemical and structural properties of a CBM6 (designated BhCBM6) that is located in an enzyme, which is shown, in this work, to display beta-1,3-glucanase activity. BhCBM6 binds beta-1,3-glucooligosaccharides with affinities of approximately 1 x 10(5) m(-1). The x-ray crystal structure of this CBM in complex with laminarihexaose reveals similarity with the structures of other CBM6s but a unique binding mode. The binding cleft in this protein is sealed at one end, which prevents binding of linear polysaccharides such as cellulose, and the orientation of the sugar at this site prevents glycone extension of the ligand and thus conferring specificity for the non-reducing ends of glycans. The high affinity for extended beta-1,3-glucooligosaccharides is conferred by interactions with the surface of the protein located between the two binding sites common to CBM6s and thus reveals a third ligand binding site in family 6 CBMs. This study therefore demonstrates how the multiple binding clefts and highly unusual protein surface of family 6 CBMs confers the extensive range of specificities displayed by this protein family. This is in sharp contrast to other families of CBMs where variation in specificity between different members reflects differences in the topology of a single binding site.  相似文献   

3.
beta-1,3-D-glucans have been isolated from fungi as right-handed 6(1) triple helices. They are categorized by the side chains bound to the main triple helix through beta-(1-->6)-D-glycosyl linkage. Indeed, since a glucose-based side chain is water soluble, the presence and frequency of glucose-based side chains give rise to significant variation in the physical properties of the glucan family. Curdlan has no side chains and self-assembles to form an water-insoluble triple helical structure, while schizophyllan, which has a 1,6-D-glucose side chain on every third glucose unit along the main chain, is completely water soluble. A thermal fluctuation in the optical rotatory dispersion is observed for the side chain, indicating probable co-operative interaction between the side chains and water molecules. This paper documents molecular dynamics simulations in aqueous solution for three models of the beta-1,3-D-glucan series: curdlan (no side chain), schizophyllan (a beta-(1-->6)-D-glycosyl side-chain at every third position), and a hypothetical triple helix with a side chain at every sixth main-chain glucose unit. A decrease was observed in the helical pitch as the population of the side chain increased. Two types of hydrogen bonding via water molecules, the side chain/main chain and the side chain/side chain hydrogen bonding, play an important role in determination of the triple helix conformation. The formation of a one-dimensional cavity of diameter about 3.5 A was observed in the schizophyllan triple helix, while curdlan showed no such cavity. The side chain/side chain hydrogen bonding in schizophyllan and the hypothetical beta-1,3-D-glucan triple helix could cause the tilt of the main-chain glucose residues to the helix.  相似文献   

4.
In a previous paper we reported that beta-D-glucans isolated from Saccharomyces cerevisiae could adsorb zearalenone, reduce its bioavailability in the digestive tract, and protect animals against its adverse effects. We have now investigated, in vitro, the kinetics of the interaction between other mycotoxins and beta-D-glucans from several sources at three pH values found along the digestive tract (3.0, 6.0, and 8.0). Acid and neutral conditions gave the highest affinity rates for aflatoxins B1 > deoxynivalenol > ochratoxin A and involved both the (1 --> 3)-beta-D-glucans and the (1 --> 6)-beta-D-glucans. Alkaline conditions, owing to their destructuring action on glucans, were favorable only for the adsorption of patulin. Using molecular mechanics, we found that hydroxyl, ketone, and lactone groups are involved in the formation of both hydrogen bonds and van der Waals interactions between aflatoxins B1, deoxynivalenol and patulin, and beta-D-glucans. Differences in the binding capacity of the mycotoxins are due to their specific physical and chemical characteristics.  相似文献   

5.
Bacillus circulans IAM1165 produces three major extracellular beta-1,3-glucanases (molecular masses, 28, 42, and 91 kDa) during the stationary phase of growth. The 28- and 42-kDa enzymes were purified to homogeneity from the culture supernatant in this study. The properties of these two enzymes were examined, together with those of the 91-kDa enzyme previously isolated. The enzymatic properties of the 28- and 42-kDa beta-1,3-glucanases closely resemble each other. The enzymes belong to a category of endo type 1,3-beta-D-glucan glucanohydrolases. The enzymes were active at pH 4.0 to 7.0. The optimum temperature of the reactions was 60 degrees C when laminarin (a soluble beta-1,3-glucan) was used as the substrate at pH 7.0. The enzymes hydrolyzed barley glucan and lichenan (beta-1,3-1,4-glucans) more effectively than laminarin. Of the three enzymes, the 42-kDa enzyme lysed fungal cell walls the most effectively.  相似文献   

6.
The plasma of the crayfish Pacifastacus leniusculus contains a protein which is able to bind to laminarin (a soluble beta-1,3-glucan) and which has been isolated by two independent methods, affinity precipitation with a beta-1,3-glucan or immunoaffinity chromatography. The purified beta-1,3-glucan binding protein was homogenous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is a monomeric glycoprotein with a molecular mass of approximately 100,000 Da and an isoelectric point of approximately 5.0. Amino acid analysis showed a very high similarity with the amino acid composition of beta-1,3-glucan binding proteins recently purified from two insects, the cockroach Blaberus craniifer and the silkworm Bombyx mori. The N-terminal amino acid sequence was determined to be: H2N-Asp-Ala-Gly-X-Ala-Ser-Leu-Val-Thr-Asn-Phe-Asn-Ser-Ala-Lys-Leu-X-X-Ly s--- Using monospecific rabbit polyclonal antibodies, the presence of this protein has also been shown within the blood cells. The purified beta-1,3-glucan binding protein did not show any peptidase or phenoloxidase activity but was able to enhance the activation of hemocyte-derived peptidase and prophenoloxidase only in the presence of the beta-1,3-glucan, laminarin, whereas mannan, dextran (alpha-glucan), or cellulose (beta-1,4-glucan) incubated with the beta-1,3-glucan binding protein had no effect on these enzyme activities. The beta-1,3-glucan binding protein could only be affinity-precipitated from crayfish plasma by the beta-1,3-glucans laminarin or curdlan (an insoluble beta-1,3-glucan), while mannan or dextran did not bind to the beta-1,3-glucan binding protein. No hemagglutinating activity of the purified beta-1,3-glucan binding protein could be detected.  相似文献   

7.
The biocontrol agent Trichoderma harzianum IMI206040 secretes beta-1,3-glucanases in the presence of different glucose polymers and fungal cell walls. The level of beta-1,3-glucanase activity secreted was found to be proportional to the amount of glucan present in the inducer. The fungus produces at least seven extracellular beta-1,3-glucanases upon induction with laminarin, a soluble beta-1,3-glucan. The molecular weights of five of these enzymes fall in the range from 60,000 to 80,000, and their pIs are 5.0 to 6.8. In addition, a 35-kDa protein with a pI of 5.5 and a 39-kDa protein are also secreted. Glucose appears to inhibit the formation of all of the inducible beta-1,3-glucanases detected. A 77-kDa glucanase was partially purified from the laminarin culture filtrate. This enzyme is glycosylated and belongs to the exo-beta-1,3-glucanase group. The properties of this complex group of enzymes suggest that the enzymes might play different roles in host cell wall lysis during mycoparasitism.  相似文献   

8.
Homogenates of Diplostomum pseudospathaceum cercariae agglutinated mouse erythrocytes. The haemagglutination could be inhibited by certain glycoconjugates containing beta-1,3- and beta-1,4-glycan chains and also by some simple saccharides. The most potent inhibitors were heparin and some other glycosaminoglycans, bacterial lipopolysaccharides, laminarin (a beta-1,3-glucan) and lactulose. After electrophoresis of cercarial proteins, a dominant double band appeared in the 22-24 kDa region of gels. On blots, this protein bound labelled laminarin and it was also one of the few proteins recognised by mouse antibodies raised against cercarial haemagglutinins. In addition, mouse polyclonal antibodies against the beta-1,3-glucan-binding protein bound exclusively to the 22-24 kDa region on Western blots. Histochemistry revealed strong binding of labelled laminarin to cercarial penetration glands; this reaction was fully blocked by unlabelled laminarin. Other labelled glycoconjugates such as heparin, hyaluronic acid and a bacterial lipopolysaccharide also bound to the glands. Immunohistochemistry confirmed the localisation of the beta-1,3-glucan-binding protein in penetration glands. Reaction of the cercarial protein with immunoglobulins from non-immunised mice was observed on both nitrocellulose membranes and histological sections; this could be blocked by laminarin in incubation buffers. We consider the cercarial haemagglutinin to be a lectin which is identical with the 22-24 kDa beta-1,3-glucan-binding protein. According to the binding specificity and localisation we speculate on a role of this lectin in cercarial penetration into the host, probably as a tissue recognition or antibody rendering factor.  相似文献   

9.
A beta-1,3-glucanase, from culture filtrates of Trichoderma harzianum, was purified in sequential steps by gel filtration, hydrophobic interaction and ion exchange chromatography. A typical procedure provided 69-fold purification with 0.32% yield. The molecular mass of the protein was found to be approximately 29 kDa, as estimated by SDS-PAGE on a 10% slab gel. The K(M) and V(max) values for beta-1,3-glucanase, using laminarin as substrate, were 1. 72 mg ml(-1) and 3.10 U ml(-1), respectively. The pH optimum for the enzyme was pH 4.4 and maximum activity was obtained at 50 degrees C. The enzyme was strongly inhibited by HgCl(2) and SDS. These results suggest that each beta-1,3-glucanase produced by T. harzianum is different and is probably encoded by different genes.  相似文献   

10.
We analyzed the human monocyte-stimulating ability of laminarin from Eisenia bicyclis, lichenan from Cetraria islandica, and their oligomers depolymerized with endo-1,3-beta-glucanase from Arthrobacter sp. The respective beta-glucan oligomers with different degrees of polymerization (DP) were fractionated from hydrolytic products of laminarin and lichenan using gel-filtration chromatography. The monocyte-conditioned medium pre-cultured in the presence of a fraction of beta-glucan oligomer (DP>/=8) from laminarin exhibited inhibitory activity against the proliferation of human myeloid leukemia U937 cells, while those pre-cultured with other beta-glucan oligomers and the original laminarin and lichenan showed little or no activity. NMR analysis indicated that the beta-glucan oligomer (DP>/=8) has an average DP value of 13, and its ratio of beta-1,3- to beta-1,6-linkages in glucopyranose units was estimated to be 1.3:1. These results indicate that the beta-1,3-glucan oligomer with a higher content of beta-1,6-linkage stimulates monocytes to inhibit the proliferation of U937 cells.  相似文献   

11.
12.
A novel elicitor that induces chitinases in tobacco BY-2 cells was isolated from Alternaria alternata 102. Six other fungi, including A. alternata IFO 6587, could not induce, or weakly induce chitinase activity. The purified elicitor was soluble in 75% methanol and showed the chitinase-inducing activity when applied at concentrations of as low as 25 ng x mL(-1). Structural determination by methylation analysis, reducing-end analysis, MALDI-TOF/MS, and NMR spectroscopy indicated that the elicitor was a mixture of beta-1,3-, 1,6-oligoglucans mostly with a degree of polymerization of between 8 and 17. Periodate oxidation of the elicitor suggested that the 1,6-linked and nonreducing terminal residues are essential for the elicitor activity. Further analysis of the elicitor responses in BY-2 cells indicated that the activity of this beta-1,3-, 1,6-glucan elicitor was about 1000 times more potent than that of laminarin, which is a known elicitor of defense responses in tobacco. Analyzing the expression of defense-related genes indicated that a phenylalanine ammonia-lyase gene and a coumaroyl-CoA O-methyltransferase gene were transiently expressed by this beta-1,3-, 1,6-glucan elicitor. The elicitor induced a weak oxidative burst but did not induce cell death in the BY-2 cells. In the tissue of tobacco plants, this beta-1,3-, 1,6-glucan elicitor induced the expression of basic PR-3 genes, the phenylpropanoid pathway genes, and the sesquiterpenoid pathway genes. In comparison with laminarin and laminarin sulfate, which are reported to be potent elicitors of defense responses in tobacco, the expression pattern of genes induced by the purified beta-1,3-, 1,6-glucan elicitor was more similar to that induced by laminarin than to that induced by laminarin sulfate.  相似文献   

13.
Two beta-1,3-glucanases which are rapidly induced in the incompatible interaction between bean (cv. Processor) and Colletotrichum lindemuthianum race beta were purified to homogeneity. Characterization of the two enzymes, GE1 and GE2, showed that they both had a basic isolectric point and a similar molecular weight (36,500 for GE1 and 36,000 for GE2), but differed in their pH optimum, thermal stability, and specific activity. GE2 was present in higher amounts but was shown to be less active than GE1 against laminarin and fungal cell walls isolated from race beta of the fungus. Both enzymes were specific for beta-1,3 linkages and showed a strict endolytic mode of action. Further characterization of GE2 was achieved by amino acid sequence analysis of tryptic peptides; the degree of homology shared with other basic beta-1,3-glucanases depended on the plant source. A time-course study showed that GE1 and GE2 were increased during infection. They were also induced by fungal elicitors, thereby indicating that they originate from the host.  相似文献   

14.
Linear beta-1,3 glucans are elicitors of defense responses in tobacco   总被引:2,自引:0,他引:2  
Laminarin, a linear beta-1,3 glucan (mean degree of polymerization of 33) was extracted and purified from the brown alga Laminaria digitata. Its elicitor activity on tobacco (Nicotiana tabacum) was compared to that of oligogalacturonides with a mean degree of polymerization of 10. The two oligosaccharides were perceived by suspension-cultured cells as distinct chemical stimuli but triggered a similar and broad spectrum of defense responses. A dose of 200 microg mL(-1) laminarin or oligogalacturonides induced within a few minutes a 1.9-pH-units alkalinization of the extracellular medium and a transient release of H(2)O(2). After a few hours, a strong stimulation of Phe ammonia-lyase, caffeic acid O-methyltransferase, and lipoxygenase activities occurred, as well as accumulation of salicylic acid. Neither of the two oligosaccharides induced tissue damage or cell death nor did they induce accumulation of the typical tobacco phytoalexin capsidiol, in contrast with the effects of the proteinaceous elicitor beta-megaspermin. Structure activity studies with laminarin, laminarin oligomers, high molecular weight beta-1, 3-1,6 glucans from fungal cell walls, and the beta-1,6-1,3 heptaglucan showed that the elicitor effects observed in tobacco with beta-glucans are specific to linear beta-1,3 linkages, with laminaripentaose being the smallest elicitor-active structure. In accordance with its strong stimulating effect on defense responses in tobacco cells, infiltration of 200 microg mL(-1) laminarin in tobacco leaves triggered accumulation within 48 h of the four families of antimicrobial pathogenesis-related proteins investigated. Challenge of the laminarin-infiltrated leaves 5 d after treatment with the soft rot pathogen Erwinia carotovora subsp. carotovora resulted in a strong reduction of the infection when compared with water-treated leaves.  相似文献   

15.
We report here cloning from the marine gliding bacterium Cytophaga drobachiensis of kappa-carrageenase, a glycoside hydrolase involved in the degradation of kappa-carrageenan. Structural features in the nucleotide sequence are pointed out, including the presence of an octameric omega sequence similar to the ribosome-binding sites of various eukaryotes and prokaryotes. The cgkA gene codes for a protein of 545 aa, with a signal peptide of 35 aa and a 229-aa-long posttranslationaly processed C-terminal domain. The enzyme displays the overall folding and catalytic domain characteristics of family 16 of glycoside hydrolases, which comprises other beta-1,4-alpha-1,3-D/L- galactan hydrolases, beta-1,3-D-glucan hydrolases (laminarinases), beta- 1,4-1,3-D-glucan hydrolases (lichenases), and beta-1,4-D-xyloglucan endotransglycosylases. In order to address the origin and evolution of CgkA, a comprehensive phylogenetic tree of family 16 was built using parsimony analysis. Family-16 glycoside hydrolases cluster according to their substrate specificity, regardless of their phylogenetic distribution over eubacteria and eukaryotes. Such a topology suggests that the general homology between laminarinases, agarases, kappa- carrageenases, lichenases, and xyloglucan endotransglycosylases has arisen through gene duplication, likely from an ancestral protein with laminarinase activity.   相似文献   

16.
A beta-1,3-glucan binding protein (betaGBP) specific for laminarin (a beta-1,3-glucan) was detected for the first time in a mollusc, Perna viridis. betaGBP was isolated and purified from the plasma using laminarin precipitation and affinity chromatography on laminarin-Sepharose 6B, respectively. It agglutinated bakers yeast, bacteria, and erythrocytes and enhanced prophenoloxidase (proPO) activity of the plasma in a dose-dependent manner. The purified betaGBP appeared as a single band in native-PAGE and the purity was conformed by HPLC. The protein has a molecular weight estimate of 510kDa as determined by SDS-PAGE and in isoelectric focusing the purified betaGBP was focused as a single band at pI 5.3. betaGBP was found to possess inherent serine protease activity but lacked beta-1,3-glucanase activity and all these results suggest that plasma betaGBP of P. viridis functions as a recognition molecule for beta-1,3-glucan on the surface of microbial cell walls. This recognition and binding lead to the activation of the prophenoloxidase cascade mediated by the inherent serine protease activity of betaGBP. Presence of agglutinating activity and serine protease activity shows that betaGBP is a bifunctional protein. The findings are discussed in light of the importance of this protein in the innate immune response of P. viridis, and they implicate evolutionary link with similar proteins found in other invertebrates.  相似文献   

17.
Beta-1,3-glucans enhance immune reactions such as antitumor, antibacterial, antiviral, anticoagulatory, and wound healing activities. beta-1,3-Glucans have various functions depending on the molecular weight, degree of branching, conformation, water solubility, and intermolecular association. The molecular weight of the soluble glucan was about 15,000 as determined by a high-performance size exclusion chromatography. From the infrared (IR) and 13C NMR analytical data, the purified soluble glucan was found to exclusively consist of beta-D-glucopyranose with 1,3 linkage. We tested the immunestimulating activities of the soluble beta-1,3-glucan extracted from Agrobacterium sp. R259 KCTC 1019 and confirmed the following activities. IFN-gamma and each cytokines were induced in the spleens and thymus of mice treated with soluble beta-1,3-glucan. Adjuvant effect was observed on antibody production. Nitric oxide was synthesized in monocytic cell lines treated with beta-1,3-glucan. The cytotoxic and antitumor effects were observed on various cancer cell lines and ICR mice. These results strongly suggested that this soluble beta-1,3-glucan could be a good candidate for an immune-modulating agent.  相似文献   

18.
Bacillus circulans IAM1165 produces at least two extracellular beta-1,3-glucanases that lyse fungal cell walls. One of these extracellular enzymes was purified to homogeneity. The molecular mass was 87 kDa, and the pI was 4.3. The optimum temperature of the enzyme reaction was 70 degrees C when laminarin (a soluble beta-1,3-glucan) was used as the substrate. The pH range of the enzyme was broad (pH 4.5 to 9.0), and the optimum pH was 6.5. The enzyme is an endo beta-1,3-glucanase and has a random cleavage pattern.  相似文献   

19.
Bacillus circulans IAM1165 produces at least two extracellular beta-1,3-glucanases that lyse fungal cell walls. One of these extracellular enzymes was purified to homogeneity. The molecular mass was 87 kDa, and the pI was 4.3. The optimum temperature of the enzyme reaction was 70 degrees C when laminarin (a soluble beta-1,3-glucan) was used as the substrate. The pH range of the enzyme was broad (pH 4.5 to 9.0), and the optimum pH was 6.5. The enzyme is an endo beta-1,3-glucanase and has a random cleavage pattern.  相似文献   

20.
The interaction of the direct dye Congo red with intact beta-D-glucans provides the basis for a rapid and sensitive assay system for bacterial strains possessing beta-(1 leads to 4),(1 leads to 3)-D-glucanohydrolase, beta-(1 leads to 4)-D-glucanohydrolase, and beta-(1 leads to 3)-D-glucanohydrolase activities. A close correspondence was observed between cellulolytic activity and beta-(1 leads to 4)-D-glucanohydrolase and beta-(1 leads to 4),(1 leads to 3)-D-glucanohydrolase activities in isolates from the bovine rumen. Many of these isolates also possessed beta-(1 leads to 3)-D-glucanohydrolase activity, and this characteristic may have taxonomic significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号