首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to examine the trait-specific response of ground beetles in terms of abundance, species richness, and composition for habitat fragmentation in temperate forests. In addition, we examined how different ecological groups and species of ground beetles responded to environmental variables. During middle May to early November in 2013, ground beetles were sampled using pitfall traps in 27 sites (18 patches and 9 continuous forests) in central Korea. A total of 51 species were identified from 17,845 ground beetles in the 27 study sites. Continuous forests had generally higher abundance and species richness of ground beetles than forest patches. Canonical correspondence analysis for ground beetles was significant, and the proportion of variance explained by environmental variables, such as patch size, elevation, organic matter (C), and soil moisture and pH, was 43.61%. In addition, species composition of ground beetles in continuous forests was grouped distinctively away from those in medium and small-sized patches. In conclusion, both small (1.1–9.6 ha) and medium patches (12.8–51.2 ha) were failed to preserve similar ground beetle biodiversity compared to continuous forests. However, our study revealed that medium-sized forest patches clearly had higher conservation value for forest specialist ground beetles than small-sized forest patches irrespective of forest type.  相似文献   

2.
Aim Urbanization and deforestation are important drivers of biodiversity change. However, long‐term changes in faunal communities within urbanizing regions are poorly understood. We investigated how well observed community changes in both space and time agree with expectations based on current paradigms in urban ecology. Location Greater Brisbane region, Australia. Methods We compared bird assemblages in two time‐periods 15 years apart, at multiple sites in remnant forest and residential suburbs across an urbanizing landscape. Differences in assemblage composition, species abundances and functional groupings were assessed within and between habitats. Results Compared with forest, suburbs in both time‐periods had over twice the total bird abundance, a different species composition, greater between‐site community similarity, a greater proportion of non‐native species and greater dominance by large‐bodied species. These differences corresponded with changes in sites whose habitat was converted from forest to suburb. Between time‐periods, abundances of 58% of suburban species changed significantly compared with those of 11% in forest. Increaser species outnumbered decreasers in suburbs, with the reverse in forest. Abundance of small‐bodied birds decreased 70% in suburbs and 20% in forest. Broad‐spectrum competitors and nest predators were common among suburban increasers. Among invasive species, the number of increasers was counterbalanced by decreasers. Both site‐scale species richness and between‐site community similarity increased to a small extent in both habitats. Main conclusions Species composition and ecological function of suburban bird communities were very dynamic. Suburban assemblages were neither a subset of forest species nor an increasingly non‐native compilation. Communities in large forest patches were comparatively stable. The notion of habitat‐specific species turnover better characterizes the nature of most changes than either species decline or homogenization, even though both of these were evident. There is considerable scope for careful urban planning, focused on both among‐ and within‐habitat variety, to sustain bird diversity in urbanizing landscapes.  相似文献   

3.
The ecological structure of ground beetles was studied. Its dynamics during the migration of ground beetles from one habitat to another as a result of severe ecological disturbances caused by tree felling and subsequent reforestation was considered. Some regularities in the formation and development of a ground beetle community in the early stage of secondary succession at the felling site were determined. Further trends were revealed using the simplest indices of diversity, species, abundance, distribution, and dominance of species. The species richness of ground beetles at the site one year after felling increased from 28 to 41 species. It decreased to 36 species in four years. According to the ecological preference, the basis of the complex of ground beetles at the forest site before felling was formed by spring-breeding species. Four years after felling, the proportion of forest species decreased (from 73.4 to 65.7%) and the significance of forestmarsh and meadow-field species increased. The proportion of summer- and autumn-breeding species also increased. The species and quantitative composition of ground beetles at the site during the first year after felling was mostly determined by neighboring forests. As reforestation proceeded, a separate biocenosis developed at the felling site and the influence of the forests became lower. The proportion of summer- and autumnbreeding species increased. The species and quantitative composition of ground beetles at the felling site was mostly determined by the neighboring forest during the first year. A separate biocenosis developed at the felling site in the following years, and the influence exercised by the forest diminished.  相似文献   

4.
To investigate the effects of urbanization on carabid beetles (Carabidae) and ground dwelling spiders (Araneae) a study was completed along a 20km urban–rural forest gradient in the Helsinki–Espoo area of southern Finland. To study changes in assemblage structure, abundance and species richness, these taxa were collected in the year 2000 using pitfall traps, which had been placed in four forest sites within each of the urban, suburban and rural zones. We expected to find changes in the abundances and species richnesses in the two taxa across the urban–rural gradient, but did not find any. Our second and third hypotheses, stating that generalist species and small-bodied species should gain dominance along the gradient from rural to urban sites, were partly supported as carabid specialists were more characteristic of suburban and rural environments whereas generalists were more likely to be collected from rural areas compared to suburban or urban sites. Furthermore, medium to large-sized carabid individuals were more likely to be collected in the rural sites compared to urban forests. We found no evidence for significant changes in spider abundance or species richness across the urban–rural gradient in relation to body size or habitat specialization. We suggest that urbanization does not have significant effects on the total abundances and species richnesses in these two taxa. However, individual species responded differently to urbanization, and there were significant differences in the specialization and body sizes of carabids across the gradient.  相似文献   

5.
Biological diversity conservation within natural reserves has been prioritized, but conservation efforts outside protected areas (where most human activities take place) have been very little considered. In this scenario, an alternative agricultural practice that may reduce the impacts of fragmentation in outer landscapes is a perforation process, which involves conservation in agricultural fields surrounded by continuous forests. Such practices enhance the positive impact of ecological services on fields. In this study we analyzed the biological diversity state in perforation fields and their surrounding forests. The analysis was done using dung beetles as biological indicators. A nested pattern in dung beetles distribution was found, which ordered the surrounding continuous forest sites as the ones with the highest species richness, followed by the perforation fields, and placed the fragmentation practice fields (continuous agricultural fields surrounding forest patches) with the lowest one. Indicator species for perforation fields and surrounding continuous forests were chosen. In general, perforation practice fields differed in composition, based upon functional groups richness and identity; it also contained a higher species richness than the fragmentation practice. Agricultural practices that enhance biological diversity conservation such as perforation, should be recommended and considered in natural resource management by local communities in order to take advantage of ecological services that otherwise may be gradually lost.  相似文献   

6.
As planted forests expand in area, they are beginning to dominate landscapes as a matrix and cause the fragmentation of remaining natural forests. To understand and predict the responses of biological assemblages to maturing planted landscapes, examining the effects of forest type (natural vs planted) and forest age on such assemblages is particularly important. Therefore, to document the effects of forest type and age on longhorned beetle assemblages, in 2008 we collected beetles in broad‐leaved natural and cedar planted forests where beetles had also been collected in 1989. Beetle species composition differed greatly between the two forest types in 1989, whereas this difference was less pronounced in 2008. Species richness and total abundance were higher in natural forests than in planted forests in 1989. In 2008, species richness had decreased in both forest types, but the difference between the two forest types had been maintained. Total abundance was also markedly lower in 2008, and the difference between forest types was much smaller. Although larval host plants were not associated with the responses of species to year (forest age or maturation), beetle species whose larvae fed on either broad‐leaved or coniferous trees (or both) exhibited slight preferences for natural forests. These results suggest that longhorned beetle assemblages become impoverished in planted landscapes as the planted matrix matures. Changes in species composition with forest maturation may be difficult to predict based on larval host plants. However, consideration of larval host plants may enable the prediction of changes in species composition caused by the replacement of natural forests by planted forests.  相似文献   

7.
Ground beetles were collected by pitfall trapping to compare their species richness between conifer plantations (14 sites) and regenerating forests (14 sites) and among forest ages and to examine how different functional groups responded to forest type, forest age, patch size, elevation, and geographic location in terms of abundance and richness. Ground beetles were collected from middle August to late October, 2008. A total of 34 species were identified from 3,156 collected ground beetles. Individual-based rarefaction curves showed greater species richness in regenerating forests, especially in 40–50-year-old forests, than in conifer plantations. Stepwise multiple regression analysis showed that patch size and elevation were major predictors of species richness and/or abundance of forest specialists, brachypterous species, and large- and medium-bodied species. A multivariate regression tree indicated that patch size and elevation were major predictors of assemblage structure. Although our results suggest that maintaining forest areas adjacent to agricultural landscapes may be essential to preserve ground beetle assemblages irrespective of forest types, further study is necessary to clarify the effects of habitat quality and amount on ground beetles in forests.  相似文献   

8.
Aim We wanted to test whether urbanization has similar effects on biodiversity in different locations, comparing the responses of ground beetle (Coleoptera, Carabidae) assemblages with an urbanization gradient. We also wanted to see if urbanization had a homogenizing effect on ground beetle assemblages. Locations Nine forested temperate locations in Europe, Canada and Japan. Methods Published results of the Globenet Project were used. At all locations, three stages were identified: (1) a forested (rural) area, (2) a suburban area where the original forest was fragmented and isolated, and (3) remnants of the original forest in urban parks. These habitats formed an urbanization series. Study arrangements (number and operation of traps) and methods (pitfall trapping) were identical, conforming to the Globenet protocol. Assemblage composition and diversity patterns were evaluated. Diversity relationships were analysed by the Rényi diversity ordering method considering all ground beetles and – separately – the forest specialist species. Taxonomic homogenization was examined by multivariate methods using assemblage similarities. Results Overall biodiversity (compared by species richness and diversity ordering) showed inconsistent trends by either urbanization intensity or by geographic position. However, when only forest species were compared, diversity was higher in the original rural (forested) areas than in urban forest fragments. Within‐country similarities of carabid assemblages were always higher than within‐urbanization stage similarities. Main conclusions Urbanization does not appear to cause a decrease in ground beetle diversity per se. Forest species decline as urbanization intensifies but this trend is masked by an influx of non‐forest species. The rural faunas were more similar to the urban ones within the same location than similar urbanization stages were to each other, indicating that urbanization did not homogenize the taxonomic composition of ground beetle faunas across the studied locations.  相似文献   

9.
Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta‐analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower‐latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher‐temperate latitudes generally replaced late‐successional specialists with early‐successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta‐analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.  相似文献   

10.
Aim To evaluate changes in the abundance, species richness and community composition of rove beetles (Coleoptera, Staphylinidae) in response to three configurations of experimental gap cuts and to the effects of ground scarification in early succession yellow birch‐dominated boreal forest. In each experimental treatment, total forest removed was held constant (35% removal by partial cutting with a concomitant decrease in gap size) but the total number of gaps was increased (two, four and eight gaps, respectively), resulting in an experimental increase in the total amount of ‘edge’ within each stand. Location Early succession yellow birch‐dominated forests, Quebec, Canada. Methods Pitfall traps, ANOVA, MIXED procedure in sas ®, post hoc Tukey's adjustment, rarefaction estimates, sum‐of‐squares and distance‐based multivariate regression trees (ssMRT, dbMRT). Results Estimates of species richness using rarefaction were highest in clearcut and two‐gap treatments, decreased in smaller and more numerous gaps and were significantly higher in scarified areas than in unscarified areas. ANOVA indicated a significant impact of harvesting on the overall standardized catch. Post hoc Tukey's tests indicated that the total catch of all rove beetles was significantly higher in uncut forests than in the treated areas. Both sum‐of‐squares and distance‐based multivariate regression trees indicated that community structure of rove beetles differed among treatments. Assemblages were grouped into (a) control plots, (b) four‐ and eight‐gap treatments and (c) two‐gap and clearcut treatments. Main conclusions Rove beetle composition responded significantly to increasing gap size. Composition among intermediate and small‐sized gap treatments (four‐ and eight‐gap treatments) was more similar to uncut control forests than were larger gap treatments (two‐gap) and clearcuts. Effects of scarification were nested within the harvested treatments. When the total area of forest removed is held constant, smaller, more numerous gaps are more similar to uncut control stands than to larger gaps and falls more closely within the natural forest heterogeneity.  相似文献   

11.
Pitfall trapping is a standard sampling method to compare the abundance or community structure of ground beetles. However, effects of sampling duration on biodiversity estimation of ground beetles according to different trap sizes have not been experimentally evaluated in temperate forests in Korea. Therefore, the objective of this study was to determine the interaction between trap sizes (SB, small‐sized bottle; MB, medium‐sized bottle; PC, plastic cup; PJ, plastic jar; PT, perforated type trap; FT, funnel‐type trap) and sampling duration (T1, 2 weeks × 2 sessions, 28 days; T2, 2 weeks × 4 sessions, 56 days; T3, 4 weeks × 2 sessions, 56 days) on estimation of ground beetle assemblages in Naejangsan National Park, a temperate forest in Korea. Funnel type and larger pitfall traps collected higher numbers of individuals and species than other trap sizes. Species composition of ground beetles was different by size of traps (SB, MB, and PC vs. PJ, PT, and FT). In particular, ground beetle composition in larger traps (PJ, PT, and FT) appeared to be influenced by environmental characteristics according to localities (e.g., soil characters and dominant tree species). These findings from our study support that pitfall trapping of ground beetles can be influenced by trap sizes per se as well as sampling durations and environmental characteristics. Thus, biodiversity monitoring in temperate forests should be conducted with long sampling duration (at least 28 days) using large‐sized traps (> 7.5 cm in diameter of trap mouthpart) considering expenses and study aims.  相似文献   

12.
Questions: How does recreational disturbance (human trampling) affect soil characteristics, the performance of the understorey vegetation, and the density and species composition of the soil seed bank in Fagus sylvatica forests? Location: Suburban forests near Basel, northwestern Switzerland. Methods: We compared various soil characteristics and the performance of the understorey vegetation in six beech forest areas frequently disturbed by recreational activities with those in six undisturbed control areas, in spring 2003. In the same forest areas, the soil seed bank was investigated using the seedling emergence method. Samples were obtained from soil cores in January 2003. Results: We found substantial changes in soil compaction, above‐ground vegetation and in the soil seed bank due to recreational activities. In frequently visited areas, soil compaction was enhanced which caused a decrease in cover, height and species richness of both herb and shrub layers. Compared with control areas, the number of trampling‐tolerant species of the seed bank was significantly higher in disturbed areas, and total species richness tended to be higher in disturbed than in control areas. Furthermore, the similarity in species composition between the above‐ground vegetation and seed bank was significant lower in disturbed than in control areas. Conclusions: The intensive use of suburban forests for recreational activities, mainly picnicking, affects the vegetation of natural beech forests. Our study indicates that a restoration of degraded forest areas from the soil seed bank would result in a substantial change of the vegetation composition.  相似文献   

13.
Selective logging with natural regeneration is advocated as a near‐to‐nature strategy and has been implemented in many forested systems during the last decades. However, the efficiency of such practices for the maintenance of forest species are poorly understood. We compared the species richness, abundance and composition of ground‐dwelling beetles between selectively logged and unlogged forests to evaluate the possible effects of selective logging in a subtropical broad‐leafed forest in southeastern China. Using pitfall traps, beetles were sampled in two naturally regenerating stands after clearcuts (ca. 50 years old, stem‐exclusion stage: selectively logged 20 years ago) and two mature stands (> 80 years old, understory re‐initiation stage: selectively logged 50 years ago) during 2009 and 2010. Overall, selective logging had no significant effects on total beetle richness and abundance, but saproxylic species group and some abundant forest species significantly decreased in abundance in selectively logged plots compared with unlogged plots in mature stands. Beetle assemblages showed significant differences between selectively logged and unlogged plots in mature stands. Some environmental characteristics associated with selective logging (e.g., logging strategy, stand age, and cover of shrub and moss layers) were the most important variables explaining beetle assemblage structure. Our results conclude that selective logging has no significant impacts on overall richness and abundance of ground‐dwelling beetles. However, the negative effects of selective logging on saproxylic species group and some unlogged forest specialists highlight the need for large intact forested areas for sustaining the existence of forest specialist beetles.  相似文献   

14.
Small urban forest reserves in New Zealand have been shown to have value in conserving indigenous beetle diversity. However there is little information available on the ability of non‐native vegetation areas such as tree privet to support indigenous beetle assemblages. To investigate this for one site, ground‐living beetles were collected using pitfall traps over a year at a small urban forest of the invasive tree Ligustrum lucidum (tree privet) in Auckland, New Zealand. A total of 815 beetles were found, from 20 families and 42 relative taxonomic units. Using monthly data, there was no correlation between soil moisture and diversity index (P = 0.805) or species richness (P = 0.375). These results raise the question of whether urban patches of non‐native tree privet may have potential as reservoirs of beetle diversity, if only until they are replaced with native vegetation.  相似文献   

15.
Aim The effects of logging and habitat degradation on the richness and abundance of small mammals in Asian rain forests are largely unknown. This work compares the species richness, dominance and evenness of small non‐volant mammals between logged and unlogged forests, and assesses whether assemblage variability (β‐diversity) is similar between forest types. Location Southeast Asia, northern Borneo (Sabah, Malaysia), Sunda‐shelf. Methods We surveyed species‐rich assemblages of small non‐volant mammals in three unlogged and three logged forests for 2 years. At each forest site, we sampled a permanently marked transect and two additional sites in three trapping sessions. All analyses were performed at both levels to include the effects of local abundances and point estimates, separately from the relative abundances of species on a more regional scale. Results We trapped a total of 1218 individuals of 28 species. Eleven common species accounted for 95% of all captures. Species richness and diversity were significantly higher in unlogged forest (27 species) than in logged forest (17 species). This was mainly attributable to the smaller number of rarely recorded species in logged forest (five compared with 16 in unlogged forest, with a total of fewer than 10 captures). However, all common species were present in both logged and unlogged forests, and our analyses revealed similar patterns of dominance, evenness and fluctuations in abundance. Hence overall assemblage composition in multivariate space did not differ greatly between forest types. Assemblages of Muridae and Tupaiidae showed similar population fluctuations in space and time, indicating that the ecology of these taxa may be partially driven by the same environmental factors. Main conclusions Although species were distributed patchily within sites, analyses at local and regional scales revealed similar patterns in diversity and assemblage variability, suggesting that effects of forest modification did not differ extensively locally and regionally, but had a profound effect on rare species. Our results emphasize the importance and conservation value of logged forest stands that are able to hold a large proportion of the small mammals also found in unlogged forests. Rare and more specialized species are more vulnerable to forest degradation than commonly caught species, resulting in the complete loss, or a decrease in numbers, of certain groups, such as arboreal small mammals and Viverridae.  相似文献   

16.
Conservation of biodiversity in production forests is crucial for mitigating biodiversity loss in the tropics. The major ecological impacts of selective logging are often the result of small clearings for skid trails, logging roads, log yards, and logging camps; however, their impacts on forest biodiversity have rarely been examined. The purpose of this study was to assess the impacts of these clearings on a forest‐dependent faunal group, dung beetles, and to identify the environmental factors responsible. Abundance and species richness of dung beetles decreased drastically in clearings, but directly increased in forests with the distance from roads/trails; abundance and species richness at 10 m from roads/trails were almost comparable with those detected in further interior forests. Similarly, species composition was significantly different between forests and clearings (except skid trails) but recovered within a short distance from roads/trails. Canopy openness was the most important environmental factor affecting the abundance, and species richness and composition of dung beetles; most dung beetle species were concentrated under closed forest canopy with less than 10 percent of canopy openness, whereas canopy openness ranged from 16 to 53 percent in clearings. Our study demonstrates that even small‐scale, unpaved clearings affect dung beetle communities through increased canopy openness. Although the effective distance was not very large, a considerable portion of logged areas can be affected when road networks are dense therefore minimizing the density of road networks and enhancing canopy recovery after logging are important for retaining biodiversity in tropical production forests.  相似文献   

17.
Habitat heterogeneity may affect the structure of animal assemblages even within apparently homogenous landscapes. Gallery forests of the Amazonia‐Cerrado ecotone have a small‐scale patchiness that is induced by river system dynamics. Gallery forests that never flood are located in upper areas of watercourse margins, whereas seasonally flooded gallery forests are located at lower ground along those margins. We tested the prediction that the assemblage structure of small non‐volant mammals of these two types of forests is distinct and arises from the ecological heterogeneity induced by seasonal floods. We found that species composition differed between forest types, with arboreal species dominating in the seasonally flooded forests and a more balanced distribution of arboreal and terrestrial species in unflooded forests. We found no differences in species abundance between habitats, but species richness was higher in unflooded forests. We hypothesize that this difference is due to decreased resource availability for strictly terrestrial species in seasonally flooded forests. Relative biomass of seasonally flooded forests was more than twice that of unflooded forests due to the dominance of large‐bodied didelphid species in that assemblage. Our results suggest that the ecological heterogeneity created by seasonal floods is central to maintaining diverse assemblages in this region. The preservation of both unflooded and flooded gallery forests, which are under high human pressure from deforestation, agricultural conversion, and implementation of dams, may be crucial to preserving small mammal diversity at the landscape scale.  相似文献   

18.
Three fragmented rain forests and one primary forest in southern Yunnan were plotted. The microclimate and soil conditions of these forests were also studied. The following conclusions were drawn: (1) The microclimatic differences between inside and outside forest are less in the fragmented forests than in the primary forest, which indicates that the buffer effects to climatic change have been reduced in the fragmented forests. The soil has deteriorated to some extent due to forest fragmentation. (2) In species composition, especially the abundance of some species and the dominant ranks of some families have changed with fragmentation. Barringtonia macrostachya, the most dominant species in the control primary forest, disappeared from the fragmented forests, while Antiaris toxicaria, which is a characteristic but not dominant species in the primary forest, is dominant in fragmented forests. (3) The total number of species per plot was reduced in the fragmented forests and the more seriously disturbed the fragment was, the more the species richness diminished. (4) In life form spectra, the liana and microphanerophyte species increased, but epiphyte, megaphanerophyte, mesophanerophyte and chamaephyte species decreased in the fragmented forests. (5) The plant species diversity is generally lower in the fragmented forests than in the primary forest, although for some life forms it could be higher. (6) The tree species with small populations could be lost first in the process of rain forest fragmentation. (7) The heliophilous or pioneer tree species increased and the shade-tolerant species were reduced in the fragmented forests.  相似文献   

19.
We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina, Paraná, Brazil. This study provides the first empirical evidence of the impact of urbanization on richness, abundance, composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest. We evaluated the community aspects (abundance, richness, composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat, rotten fish, pig dung and decaying banana). A total of 1 719 individuals were collected, belonging to 29 species from 11 genera and six Scarabaeinae tribes. The most urban‐immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness. The beetle communities were distinct with respect to the fragments and feeding habits. Except for the dung beetle assemblage in the most urbanized forest fragment, all others exhibited contrasting differences in species composition attracted to each bait type. Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities, even small ones, can provide refuges for Scarabaeinae.  相似文献   

20.
Aim To address the relative role of adjacent land use, distance to forest edge, forest size and their interactions on understorey plant species richness and composition in perimetropolitan forests. Location The metropolitan area of Barcelona, north‐eastern Spain. Methods Twenty sampling sites were distributed in two forest size‐categories: small forest patches (8–90 ha) and large forest areas (> 18,000 ha). For each forest‐size category, five sites were placed adjacent to crops and five sites adjacent to urban areas. Vascular plant species were recorded and human frequentation was scored visually in 210 10 × 10 m plots placed at 10, 50 and 100 m from the forest edge, and additionally at 500 m in large forest areas. Plant species were grouped according to their ecology and rarity categories. A nonmetric multidimensional scaling (NMS) ordination was carried out to detect patterns of variation in species assemblage, and to explore the relationships between these patterns and the richness of the species groups and the studied factors. Factorial anovas were used to test the significance of the studied factors on the richness of species groups. Relationships between human frequentation and the studied variables were assessed through contingency tables. Results Forest‐size category was the main factor affecting synanthropic species (i.e. those thriving in man‐made or man‐disturbed habitats). Synanthropic species richness decreased with increasing distance from the forest edge and, when forests were adjacent to crops, it was higher in small forest patches than in large forest areas. Richness of rare forest species was lower in small forest patches than in large forest areas when forests were adjacent to urban areas. Richness of common forest species and of all forest species together were higher close to the forest edge than far from it when forests were adjacent to urban areas. Forests adjacent to urban areas were more likely to experience high human frequentation, particularly in those plots nearest to the forest edge. Main conclusions Forest‐size category and adjacent land use were the most important factors determining species richness and composition. The preservation of large forests adjacent to crops in peri‐urban areas is recommended, because they are less frequented by humans, are better buffered against the percolation of nonforest species and could favour the persistence of rare forest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号