首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Permian and Triassic were key time intervals in the history of life on Earth. Both periods are marked by a series of biotic crises including the most catastrophic of such events, the end‐Permian mass extinction, which eventually led to a major turnover from typical Palaeozoic faunas and floras to those that are emblematic for the Mesozoic and Cenozoic. Here we review patterns in Permian–Triassic bony fishes, a group whose evolutionary dynamics are understudied. Based on data from primary literature, we analyse changes in their taxonomic diversity and body size (as a proxy for trophic position) and explore their response to Permian–Triassic events. Diversity and body size are investigated separately for different groups of Osteichthyes (Dipnoi, Actinistia, ‘Palaeopterygii’, ‘Subholostei’, Holostei, Teleosteomorpha), within the marine and freshwater realms and on a global scale (total diversity) as well as across palaeolatitudinal belts. Diversity is also measured for different palaeogeographical provinces. Our results suggest a general trend from low osteichthyan diversity in the Permian to higher levels in the Triassic. Diversity dynamics in the Permian are marked by a decline in freshwater taxa during the Cisuralian. An extinction event during the end‐Guadalupian crisis is not evident from our data, but ‘palaeopterygians’ experienced a significant body size increase across the Guadalupian–Lopingian boundary and these fishes upheld their position as large, top predators from the Late Permian to the Late Triassic. Elevated turnover rates are documented at the Permian–Triassic boundary, and two distinct diversification events are noted in the wake of this biotic crisis, a first one during the Early Triassic (dipnoans, actinistians, ‘palaeopterygians’, ‘subholosteans’) and a second one during the Middle Triassic (‘subholosteans’, neopterygians). The origination of new, small taxa predominantly among these groups during the Middle Triassic event caused a significant reduction in osteichthyan body size. Neopterygii, the clade that encompasses the vast majority of extant fishes, underwent another diversification phase in the Late Triassic. The Triassic radiation of Osteichthyes, predominantly of Actinopterygii, which only occurred after severe extinctions among Chondrichthyes during the Middle–Late Permian, resulted in a profound change within global fish communities, from chondrichthyan‐rich faunas of the Permo‐Carboniferous to typical Mesozoic and Cenozoic associations dominated by actinopterygians. This turnover was not sudden but followed a stepwise pattern, with leaps during extinction events.  相似文献   

2.
A new Early Triassic marine fauna is described from an exotic block (olistolith) from the Ad Daffah conglomerate in eastern Oman (Batain), which provides new insights into the ecology and diversity during the early aftermath of the Permian–Triassic Boundary mass extinction. Based on conodont quantitative biochronology, we assign a middle Griesbachian age to the upper part of this boulder. It was derived from an offshore seamount and yielded both nektonic and benthic faunas, including conodonts, ammonoids, gastropods and crinoid ossicles in mass abundance. This demonstrates that despite the stratigraphically near extinction at the Permian–Triassic Boundary, Crinoidea produced enough biomass to form crinoidal limestone as early as middle Griesbachian time. Baudicrinus, previously placed in Dadocrinidae, is now placed in Holocrinidae; therefore, Dadocrinidae are absent in the Early Triassic, and Holocrinidae remains the most basal crown‐group articulates, originating during the middle Griesbachian in the Tethyan Realm. Abundant gastropods assigned to Naticopsis reached a shell size larger than 20 mm and provide another example against any generalized Lilliput effect during the Griesbachian. Whereas the benthic biomass was as high as to allow the resumption of small carbonate factories, the taxonomic diversity of the benthos remained low compared to post‐Early Triassic times. This slow benthic taxonomic recovery is here attributed to low competition within impoverished post‐extinction faunas.  相似文献   

3.
This paper compares the relative contributions of within-habitat diversity [alpha-diversity] and between-habitat-diversity [beta-diversity] to regional diversity [gamma-diversity] in marine benthic communities of the western US before and after the end-Permian mass extinction. We found that presumably cool-water faunas from the Permian Gerster Limestone and the Park City Formation had low alpha- and beta-diversities, comparable to those of low diverse faunas of the Early Triassic. In contrast, tropical Permian faunas had much higher alpha-diversities and a variable pattern of beta-diversity: Whereas faunas of space-limited bioherms show a positive correlation between beta-diversity and gamma-diversity, beta-diversity in level-bottom faunas is elevated only when gamma-diversity is very high (>250 species). This contrasting pattern probably reflects differential effects of interspecific competition on habitat partitioning. In low-competitive level-bottom faunas, species are able to coexist until competition forces species into their ecological optima, thereby increasing beta-diversity. This effect occurs at much lower gamma-diversities in more competitive reef-bound faunas, causing the observed positive correlation between beta- and gamma-diversity. We suggest that differences in the level of interspecific competition and hence diversity partitioning between Permian and Triassic benthic communities result from the higher average metabolic rates in the Mesozoic mollusc-dominated benthos in contrast to their Permian counterparts.  相似文献   

4.
A sample of marine invertebrates from the Late Triassic Cassian Formation (north Italy) yielded one of the most diverse Early Mesozoic fossil assemblages ever reported (c. 170 species). The assemblage was found in basin clays, but was transported from nearby carbonate platforms as indicated by fragmentation, microbial encrustation and the presence of coated grains and ooids. Most of the specimens are small (< 1 cm) reflecting both, small adult sizes and size sorting during transport. Rarefaction analysis suggests that diversity of surface collection and bulk sampling is the same. However, rank abundance, species richness and taxonomic composition differ strongly according to sampling method. Low‐grade lithification of the sediments is the main reason that high diversity can be recognized, because it facilitates disaggregation and finding of small molluscs. Sample standardization shows that the studied assemblage is much more diverse than known Early Triassic assemblages. However, its diversity is similar to that of Anisian assemblages. This suggests that recovery from the end‐Permian mass‐extinction was quite advanced in the Middle Triassic and alpha‐diversity remained high until the Late Triassic. According to current models, Early Triassic and Anisian faunas match the niche overlap phase of recovery during which diversity is built up by increasing alpha‐diversity, whereas beta‐diversity rises slowly. Subsequently, habitat width of species contracts because of increasing competition, making beta‐diversity the principal drive of overall diversity increase. The diversity pattern of various Late Triassic Cassian associations meets the predictions for the transition from the niche overlap to the habitat contraction phase.: Triassic, Cassian Formation, palaeoecology, diversity, mollusc dominance.  相似文献   

5.
Since diverse ostracod faunas in the immediate aftermath of the latest Permian mass extinction are mainly found within Permian–Triassic boundary microbialites (PTBMs), the idea of an ostracod ‘microbial‐related refuge’ has been proposed. Here, we report a diversified earliest Triassic ostracod fauna from the Yangou section in South China, where no PTBMs were deposited, providing evidence inconsistent with this ‘microbial‐related refuge’ hypothesis. In addition, a significant ostracod extinction is recorded, corresponding with the earliest Triassic mass extinction (ETME). This ETME of ostracods is associated with size increases and a length/height ratio (L/H) decrease, indicating varied evolutionary patterns of shape and size of ostracods through the Permian–Triassic (P‐Tr) extinction events. Although the nature of these biotic changes is somewhat unclear, the temporally varied ‘refuge zone’ scenario provides us with a window to reconstruct the environmental dynamics of ecosystem changes during the P‐Tr transition.  相似文献   

6.
A. Hallam 《Historical Biology》2013,25(2-4):257-262
Data from widespread dysaerobic facies, carbon/sulphur ratios and cerium anomalies suggest that the early Triassic was a time when anoxic conditions spread widely over epicontinental seas. These conditions, associated with marine transgression following the latest Permian regression, are likely to be a prime cause of the mass extinction of Palaeozoic marine faunas. The occurrence of many Lazarus taxa in the Middle and Upper Triassic indicates, however, that the extinctions at the end of the Permian were less severe than has been widely assumed, and that the turnover from Palaeozoic to Mesozoic faunas was considerably extended in time, being finally accomplished only after the end‐Triassic mass extinction event.  相似文献   

7.
Two important lagerstätten of Early Triassic gastropods, the Sinbad Limestone (Utah, USA) and the Gastropod Oolite (North Italy) yield about 40% of all described Early Triassic species. This great contribution to the global diversity and the exceptional good preservation render high information content, which characterizes fossil lagerstätten. The Smithian Sinbad Limestone contains the most diverse Early Triassic gastropod fauna. At the type locality, it occurs in single, probably storm-induced shell bed within a series of high energy deposits underlain by intertidal microbial mats and subtidal oolite/peloid shoals. The main shell bed contains about 40 invertebrate taxa. Gastropods, scaphopods, and bivalves are most abundant and form an assemblage, which is dominated by small neritaemorphs, the opisthobranch Cylindrobullina convexa and the scaphopod Plagioglypta (annulated tubes). This assemblage lived on shallow, subtidal soft-bottoms based on sedimentological and ecological characteristics. The Dienerian (to Smithian?) Gastropod Oolite Member (North Italy) has extremely abundant, probably salinity-controlled gastropod faunas with low species richness. Almost monospecific assemblages of Pseudomurchisonia kokeni as well as assemblages with about four species are present in the Gastropod Oolite. Modern hydrobiid mudsnail faunas which are adapted to strongly fluctuating salinity in intertidal to shallow subtidal coastal areas form probably a suitable model for the Gastropod Oolite biota. Gastropods from the Werfen- and Moenkopi-Formation lagerstätten are well preserved compared to other Early Triassic deposits. The high contribution to the global diversity of just two sites suggests very incomplete sampling and preservational bias. However, the low richness of the major faunas reflects depauperate Early Triassic faunas and slow recovery from the Permian/Triassic crisis.  相似文献   

8.
Fossil insects of European Russia from the Urzhumian to Vyatkian stages are reviewed, new taxa are described, and dynamics of insect taxonomic diversity around the Permian-Triassic boundary in light of the Paleozoic-Mesozoic boundary global extinction problem is analyzed. Traces of interactions between arthropods and plants are analyzed. Insect-bearing deposits of the Late Paleozoic found in the northern and eastern areas of the East European Platform are unique on the global scale in their completeness and continuity, allowing us to trace especially comprehensively the biotic processes that occurred around the boundary described as the time of the greatest biotic catastrophe of the Phanerozoic. A total of 28 genera and 111 species are newly described. Within the range from the Urzhumian to the Permo-Triassic boundary, 15 representative successive assemblages, including 112 families, are recognized (seven in the area in question and eight in other regions of Asia, Australia, and Africa). New tools are developed for the analysis of the dynamics of diversity. These tools show an approximately equilibrium (slightly positive) dynamics in the Urzhumian and Severodvinian and a drop in diversity during the Vyatkian Age. It is shown that Permian insect assemblages acquired a substantially post-Paleozoic pattern much earlier than the end of the Paleozoic. The character of changes that took place in the Induan and Olenekian remains uncertain, but a large-scale extinction event did not occur here: most families that have not been recorded at the beginning of the Triassic are recorded again in the Middle and Upper Triassic. Nevertheless, a biotic crisis probably actually took place, but was reduced to reorganization of the biota’s structure, which provided enormous growth of biodiversity over subsequent hundreds of millions of years, rather than resulted in catastrophic extinction. This study is intended for entomologists, stratigraphers, and all readers interested in the biotic events that took place around the Permian-Triassic boundary.  相似文献   

9.
We describe a new Early Triassic (Griesbachian) succession of conodont faunas from a high‐resolution sampling of the basal Early Triassic microbial limestone and the base of the overlying unit at the Wuzhuan section (Nanpanjiang Basin, Guangxi, South China). The microbial limestone records the earliest phase of the Early Triassic biotic recovery after the end‐Permian mass extinction. For the first time, rich conodont faunas are reported from within the microbialite. The faunas from Wuzhuan are largely dominated by anchignathodontids, including several Isarcicella species, which were previously documented only from strata above the microbialite. A total of 14 conodont species assigned to three genera is recorded from the Wuzhuan section. Starting from the base of the microbialite upwards, several species are sequentially added to the conodont assemblage. The alpha diversity peaks at the top of the microbialite. The conodont record in the considered microbialite interval at Wuzhuan is presumably unaffected by local ecological changes. It therefore more likely represents an evolutionary rather than an ecological pattern. We compare the Wuzhuan's conodont record with a well‐supported phylogenetic model and suggest that the sequence of first occurrences at Wuzhuan is the closest to the ‘true’ sequence of evolutionary events that took place during this Griesbachian radiation of anchignathodontids. Based on comparisons with the GSSP section at Meishan, we suggest further that the first occurrence of Hindeodus parvus in Meishan does not correspond to its first appearance datum.  相似文献   

10.
Permian fusulinoidean faunas occur in mainly four stratigraphic levels in the Baoshan Block of West Yunnan and the Sibumasu Block of Southeast Asia, which constituted part of the eastern Cimmerian Continent. The oldest fauna, from the upper part of the Dingjiazhai Formation in the Baoshan Block, consists of Pseudofusulina, Eoparafusulina, and a new boultoniid genus, and is assignable to the Yakhtashian (=Artinskian). The second one, which occurs in the basal part of the Ratburi Limestone and its equivalent strata in the Sibumasu Block, is represented by Monodiexodina, and is probably referable to the Bolorian (=Kungurian). The third fauna, composed of Eopolydiexodina, Rugososchwagerina, Yangchienia, Chusenella, Jinzhangia, and several other genera, is dated to the Murgabian (=Wordian), and occurs in the lower part of the Shazipo and Daaozi formations in the Baoshan Block and the main part of the Ratburi Limestone in the Sibumasu Block. The youngest fauna of probably Dzhulfian (=Wuchiapingian) age is found in the upper part of the Ratburi Limestone, and contains Nanlingella, Reichelina, Codonofusiella?, and a few staffellid genera. A smaller foraminiferal genus, Shanita, found from the upper part of the Ratburi Limestone and the upper part of the Shazipo Formation is also an important element of the foraminiferal assemblage near the Midian-Dzhulfian (=Capitanian-Wuchiapingian) boundary in the Baoshan and Sibumasu blocks.In the eastern Cimmerian Continent, low generic diversity throughout the Permian and the paucity of Tethys-characterizing neoschwagerinid and verbeekinid genera during Middle Permian time are two remarkable features of the Permian fusulinoidean faunas. In the Cimmerian Continent, the generic diversity of Permian fusulinoidean faunas in space and time gradually increases from the Early Permian to late Middle Permian as well as from the eastern Cimmerian areas to western ones. The temporal increase of the generic diversity can be explained by the northward drift of the Cimmerian Continent during Permian time. In contrast, the lower generic diversity of the eastern Cimmerian Permian fusulinoidean faunas against western ones is possibly due to an oblique arrangement of the continent to paleolatitude. Thus, the western Cimmerian Continent was more proximal to the tropical Tethyan domain than its eastern part. In addition, the Middle Permian Cimmerian paleobiogeographic region is likely to be subdivided into two subregions, the western Tethyan Cimmerian and the eastern Gondwanan Cimmerian, based on the distribution pattern of verbeekinid and neoschwagerinid fusulinoideans and overall generic diversity. The scarce occurrence or total absence of these essentially Tethys-indicating fusulinoideans in the Baoshan and Sibumasu blocks suggests that the eastern Cimmerian Continent was still far from the equatoro-tropical Cathaysian domain and was probably in a warm temperate or subtropical zone until the end of the Permian. The eastern Cimmerian areas finally migrated into a tropical zone by the Late Triassic judging from well-developed Carnian sponge-coral buildups in the Chaiburi Formation in the Sibumasu Block.  相似文献   

11.
Cranial morphology of Permian and Triassic Therocephalia of Eastern Europe is revised. The Therocephalia are regarded as an order of the subclass Eutherapsida of the class Theromorpha. Phylogenetic relationships are reconsidered and a tentative taxonomic scheme of the order is proposed. Biomorph evolution of East European Therocephalia from the Middle Permian to the Middle Triassic are discussed.  相似文献   

12.
The limits and difficulties related to the tools currently in use for palaeosynecological comparisons of faunas or floras of different geological periods are discussed. The new method of the Wagner parsimony Applied to Palaeosynecology Using Morphology (WAPUM method), is defined and tested on morphological characters gathered from two insect groups Odonatoptera and Thripida. The difficulties related to the monophyly of the taxonomic groups used in the more traditional approaches are no longer a problem when using the WAPUM method. In the WAPUM a character is ‘presence versus absence of species bearing a morphological structure’. The results obtained from use of the WAPUM minimize the number of changes among character states. Application of the WAPUM could reveal signals to confirm or object the currently available scenarios for the global changes in the evolution of past diversity and disparity of organisms (major changes or global crises of diversity).  相似文献   

13.
Summary Comparisons of prehistoric (A.D. 1100–1400) and extant cricetine-dominated rodent faunas from two locations in New Mexico and one in Arizona reveal temporal changes in both species diversity and taxonomic composition. The archaeological context of the prehistoric faunas permitted them to be dated rather accurately; paleoenvironmental inferences generated from other materials recovered in the excavations such as pollen samples, agricultural remains, and tree-ring specimens provided evidence about prehistoric environmental conditions in the study areas. Both richness and evenness components of diversity are lower in the present day faunas than in their prehistoric counterparts. At the beta (between-habitat or valley-wide) level of diversity the increased prehistoric species richness as well as the nature of the differences in present and prehistoric taxonomic composition can be accounted for by small climatic shifts which were occurring between A.D. 1100 and 1300 in the Southwest and the resultant biogeogrphic responses of certain rodent species. Alpha (or within-habitat) diversity is similar for all analyzed faunas. This suggests basic similarities in very local species packing despite observed spatial and temporal variation in valley-wide diversities. Environmental changes stemming from climatic shifts provide a reasonable explanation of the observed patterns of rodent species occurrence and diversity. Habitat destruction resulting from agricultural practies of prehistoric human populations appears to have had only a limited impact on these rodent communities.  相似文献   

14.
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.  相似文献   

15.
Species are unevenly distributed among genera within clades and regions, with most genera species-poor and few species-rich. At regional scales, this structure to taxonomic diversity is generated via speciation, extinction and geographical range dynamics. Here, we use a global database of extant marine bivalves to characterize the taxonomic structure of climate zones and provinces. Our analyses reveal a general, Zipf–Mandelbrot form to the distribution of species among genera, with faunas from similar climate zones exhibiting similar taxonomic structure. Provinces that contain older taxa and/or encompass larger areas are expected to be more species-rich. Although both median genus age and provincial area correlate with measures of taxonomic structure, these relationships are interdependent, nonlinear and driven primarily by contrasts between tropical and extra-tropical faunas. Provincial area and taxonomic structure are largely decoupled within climate zones. Counter to the expectation that genus age and species richness should positively covary, diverse and highly structured provincial faunas are dominated by young genera. The marked differences between tropical and temperate faunas suggest strong spatial variation in evolutionary rates and invasion frequencies. Such variation contradicts biogeographic models that scale taxonomic diversity to geographical area.  相似文献   

16.
The Carboniferous and Permian of the Baoshan block consist of three major depositional sequences: a Lower Carboniferous carbonate sequence, a Lower Permian siliciclastic sequence, and a Middle Permian carbonate sequence. These three sequences were interrupted by two major regressive events: first, the Namurian Uplift ranging in age from Serpukovian to Gzhelian, and second, the Post-Sakmarian Regression occurring probably at Artinskian time in the Baoshan block, although the precise time interval of the latter event is still unclear. The Baoshan block is characterized by warm-water, highly diverse and abundant faunas during the Early Carboniferous, by cold-water and low diversity faunas during the Early Permian, and by possibly warm-water but low diversity faunas during the Middle Permian. The Sweetognathus bucaramangus conodont fauna constrains the upper boundary of the diamictite-bearing siliciclastic deposits (Dingjiazhai Formation) to the Sakmarian to early Artinskian, as well as the eruption of the rifting basalts (Woniusi Formation) to, at least, the post-early Artinskian. Paleozoogeographically, affiliation of the faunas in the Baoshan block changed from Eurasian in the Early Carboniferous, to Peri-Gondwanan in the Early Permian, and to Marginal Cathaysian/Cimmerian in the Middle Permian. Cimmerian blocks have more or less comparable geohistory to one another in the Carboniferous and Permian. During the Middle Permian, the eastern Cimmerian blocks such as Sibumasu (s.s), Baoshan, and Tengchong are not far from the palaeoequator, but apparently more distant than the western Cimmerian blocks based on the presence or absence of some index taxa such as the fusulinaceans Eopolydiexodina and Neoschwagerina, and the corals Thomasiphyllum and Wentzellophyllum persicum.  相似文献   

17.
Dramatic changes in ancient biotas usually interpreted as ecological crises or mass extinctions are treated in many publications of every sort, and yet our notions about such events remain insufficient. The data of fossil insect studies about the Permian—Triassic crisis, thought to be the greatest in the Phanerozoic, are reviewed here.  相似文献   

18.
Phanerozoic evolution of brachiopods produced many linear (established by a comparison of successive geologic time units) and non-linear (established by a comparison of non-successive geologic time units) effects, which can be examined quantitatively by using the similarity coefficients (Czekanowski's Quantified Coefficient and Gower Index) and correlation tools. The high-rank suprageneric diversity structure accounts for a number of superfamilies in each of 26 orders for every epoch of geological time. The intensity of turnovers in this structure was generally low during the entire Phanerozoic. It was slightly stronger during the Early Paleozoic, but close to zero during the Cenozoic, when the high-rank suprageneric diversity structure of brachiopods stabilized finally. Significant turnovers took place at the Middle Cambrian–Early Ordovician, the Late Ordovician–Early Silurian, the Late Silurian–Early Devonian, the Middle Devonian–Mississippian, and the Permian–Triassic transitions. Influences of mass extinctions, both major like those End Ordovician or Permian/Triassic and minor like Early Jurassic or Jurassic/Cretaceous, on the high-rank suprageneric diversity structure of brachiopods is registered. The strongest was the consequences of the Permian/Triassic catastrophe, which perhaps even reset the brachiopod evolution. No evident direct relationships are established between intensity of turnovers and eustatic fluctuations. However, the changes in the diversity structure recorded with the Gower Index provide evidence that eustatic lowstands were more favorable for intensification in these changes.  相似文献   

19.
《Comptes Rendus Palevol》2005,4(6-7):517-530
Previous research indicated that ammonoid taxonomic diversity exploded after the Late Permian mass extinction, regaining pre-extinction levels by the Late Induan (Dienerian substage). From taxonomic analyses it had been inferred that ammonoids recovered rapidly, relative to other marine invertebrate groups. Complementing taxonomic metrics with morphologic and spatial data revealed more complex recovery dynamics. Morphological analysis indicated that ammonoids did not fully recover until the Spathian or Anisian. Taxonomic diversity is a poor predictor of disparity during the recovery. Spatial partitioning of taxonomic and morphological diversity revealed spatially homogeneous recovery patterns. Combining taxonomic, morphological, and spatial data refined interpretations of Triassic ammonoid recovery patterns and indicated that ecological, not intrinsic, factors were the probable control on ammonoid recovery rates. To cite this article: A.J. McGowan, C. R. Palevol 4 (2005).  相似文献   

20.
Eastern Europe shows the most complete in the world continuous sequence of continental Permian and Triassic deposits, which allows the development of tetrapod faunas over more than 17 successive stages to be traced. The newly obtained data on transitional Vyazniki and Sundyr tetrapod faunas provide more complete characteristics of the Severodvinian (Late Guadalupian, pre-Lopingian) and Permian-Triassic ecological crises and the ways of replacement of the dominant vertebrate groups of Eastern Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号