首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis.  相似文献   

2.
The effects of the microtubular poisons colchicine, vinblastine and nocodazole, on cleavage furrow formation and induction of furrow-like dents in eggs of the newt, Cynops pyrrhogaster , were examined.
Solutions of the poisons were injected beneath the cortex around the small initial furrow, or around the advancing tip of the furrow of eggs during the first cleavage. This resulted in prompt block of the progress of the furrow at the injection site, and subsequent total regression of the furrow or incomplete cleavage.
The ability of the cortex of a cleavage-arrested blastomere to form a furrow-like dent was tested by inhibiting furrow formation of one blastomere of two-cell embryos by injection of the microtubular poisons, and then transplantation of the blastomere under the cortex of the animal half with furrow-inducing cytoplasm (FIC) taken from normally cleaving eggs. No dent was formed. Moreover, FIC from eggs treated with a poison had no ability to induce a dent on the surface of normally cleaving eggs.
These results show that microtubule structures are directly involved in formation of a cleavage furrow.  相似文献   

3.
L. L. Ehler  J. A. Holmes    S. K. Dutcher 《Genetics》1995,141(3):945-960
The bld2-1 mutation in the green alga Chlamydomonas reinhardtii is the only known mutation that results in the loss of centrioles/basal bodies and the loss of coordination between spindle position and cleavage furrow position during cell division. Based on several different assays, bld2-1 cells lack basal bodies in >99% of cells. The stereotypical cytoskeletal morphology and precise positioning of the cleavage furrow observed in wild-type cells is disrupted in bld2-1 cells. The positions of the mitotic spindle and of the cleavage furrow are not correlated with respect to each other or with a specific cellular landmark during cell division in bld2-1 cells. Actin has a variable distribution during mitosis in bld2-1 cells, but this aberrant distribution is not correlated with the spindle positioning defect. In both wild-type and bld2-1 cells, the position of the cleavage furrow is coincident with a specialized set of microtubules found in green algae known as the rootlet microtubules. We propose that the rootlet microtubules perform the functions of astral microtubules and that functional centrioles are necessary for the organization of the cytoskeletal superstructure critical for correct spindle and cleavage furrow placement in Chlamydomonas.  相似文献   

4.
This paper aims at examining the effect of colchicine, a microtubular poison, on the process of furrow formation in whole eggs and egg fragments as well as the process of artificial induction of furrow-like dents, in eggs of the newt, Cynops pyrrhogaster. To apply colchicine locally to eggs, the eggs were slit across or along a furrow in a colchicine solution during first cleavage. When a slit was made across or in front of a growing furrow at the onset of its growth, the furrow quickly ceased growing and often regressed. Cortices containing an entire growing furrow were isolated along with a thin layer of subcortical cytoplasm immediately after the start of the first cleavage. Furrows in the cortices degenerated when the cortices were cultured in a colchicine solution, whereas they continued growing when they were cultured in Holtfreter's saline. Furrow-inducing cytoplasm was injected to a site beneath the cortex in the animal half of the egg during first cleavage. When a small slit was made close to the site of the injection in a colchicine solution, no furrow-like dent was induced. These results imply that microtubules are directly involved in the generation and growth of cleavage furrows.  相似文献   

5.
The ARF6 GTPase mediates cell shape changes in interphase cells through its effects on membrane cycling and actin remodeling. In this study, we focus our attention on the dynamics of cell division and present evidence supporting a novel role for ARF6 during cleavage furrow ingression and cytokinesis. We demonstrate that endogenous ARF6 redistributes during mitosis and concentrates near the cleavage furrow during telophase. Constitutively activated ARF6 localizes to the plasma membrane at the site of cleavage furrow ingression and midbody formation, and dominant negative ARF6 remains cytoplasmic. By using a novel pull-down assay for ARF6-GTP, we find an abrupt, but transient, increase in ARF6-GTP levels as cells progress through cytokinesis. Whereas high levels of expression of a GTPase-defective ARF6 mutant induce aberrant phenotypes in cells at cytokinesis, cells expressing low levels of ARF6 mutants do not display a significant mitotic delay or cytokinesis defect, presumably due to compensatory or redundant mechanisms that allow cytokinesis to proceed when the ARF6 GTPase cycle is disrupted. Finally, actin accumulation and phospholipid metabolism at the cleavage furrow are unchanged in cells expressing ARF6 mutants, suggesting that ARF6 may be involved in membrane remodeling during cytokinesis via effector pathways that are distinct from those operative in interphase cells.  相似文献   

6.
Mitochondria are dynamic organelles with multiple cellular functions, including ATP production, calcium buffering, and lipid biosynthesis. Several studies have shown that mitochondrial positioning is regulated by the cytoskeleton during cell division in several eukaryotic systems. However, the distribution of mitochondria during mammalian cytokinesis and whether the distribution is regulated by the cytoskeleton has not been examined. Using live spinning disk confocal microscopy and quantitative analysis of mitochondrial fluorescence intensity, we demonstrate that mitochondria are recruited to the cleavage furrow during cytokinesis in HeLa cells. After anaphase onset, the mitochondria are recruited towards the site of cleavage furrow formation, where they remain enriched as the furrow ingresses and until cytokinesis completion. Furthermore, we show that recruitment of mitochondria to the furrow occurs in multiple mammalian cells lines as well as in monopolar, bipolar, and multipolar divisions, suggesting that the mechanism of recruitment is conserved and robust. Using inhibitors of cytoskeleton dynamics, we show that the microtubule cytoskeleton, but not actin, is required to transport mitochondria to the cleavage furrow. Thus, mitochondria are specifically recruited to the cleavage furrow in a microtubule-dependent manner during mammalian cytokinesis. Two possible reasons for this could be to localize mitochondrial function to the furrow to facilitate cytokinesis and / or ensure accurate mitochondrial inheritance.  相似文献   

7.
Sawai (2) found in the amphibian egg that furrow-inducing cytoplasmic component (FIC) was localized along the cleavage furrow, which could induce a furrow on the polar surface of cleaving egg under which FIC was injected. But this procedure failed on the surface of uncleaved fertilized egg. In the present experiments, an attempt was made to induce a cleavage furrow on the surface of uncleaved egg of the newt, Cynops pyrrhogaster. A piece of the cortex was cut from the uncleaved egg, which was transplanted to the egg just before or just after the onset of the cleavage, using a fine glass needle. After the transplantation FIC was injected beneath the graft with a capillary. The graft reacted to FIC and a furrow-like dent was induced at the position. Besides, stiffness of the graft increased during the cleavage of the host egg. In contrast to the cortical grafting, a large amount of the cytoplasm excluding FIC was injected under the cortex of an uncleaved egg. After several minutes FIC was deposited at the site. A furrow-like dent was formed there in many cases.  相似文献   

8.
Aurora-B is a protein kinase required for chromosome segregation and the progression of cytokinesis during the cell cycle. We report here that Aurora-B phosphorylates GFAP and desmin in vitro, and this phosphorylation leads to a reduction in filament forming ability. The sites phosphorylated by Aurora-B; Thr-7/Ser-13/Ser-38 of GFAP, and Thr-16 of desmin are common with those related to Rho-associated kinase (Rho-kinase), which has been reported to phosphorylate GFAP and desmin at cleavage furrow during cytokinesis. We identified Ser-59 of desmin to be a specific site phosphorylated by Aurora-B in vitro. Use of an antibody that specifically recognized desmin phosphorylated at Ser-59 led to the finding that the site is also phosphorylated specifically at the cleavage furrow during cytokinesis in Saos-2 cells. Desmin mutants, in which in vitro phosphorylation sites by Aurora-B and/or Rho-kinase are changed to Ala or Gly, cause dramatic defects in filament separation between daughter cells in cytokinesis. The results presented here suggest the possibility that Aurora-B may regulate cleavage furrow-specific phosphorylation and segregation of type III IFs coordinatedly with Rho-kinase during cytokinesis.  相似文献   

9.
Cytokinesis is the final stage in cell division that serves to partition cytoplasm and daughter nuclei into separate cells. Membrane remodeling at the cleavage plane is a required feature of cytokinesis in many species. In animal cells, however, the precise mechanisms and molecular interactions that mediate this process are not yet fully understood. Using real-time imaging in live, early stage zebrafish embryos, we demonstrate that vesicles labeled with the v-SNARE, VAMP-2, are recruited to the cleavage furrow during deepening in a microtubule-dependent manner. These vesicles then fuse with, and transfer their VAMP-2 fluorescent label to, the plasma membrane during both furrow deepening and subsequent apposition. This observation indicates that new membrane is being inserted during these stages of cytokinesis. Inhibition of SNAP-25 (a cognate t-SNARE of VAMP-2), using a monoclonal antibody, blocked VAMP-2 vesicle fusion and furrow apposition. Transient expression of mutant forms of SNAP-25 also produced defects in furrow apposition. SNAP-25 inhibition by either method, however, did not have any significant effect on furrow deepening. Thus, our data clearly indicate that VAMP-2 and SNAP-25 play an essential role in daughter blastomere apposition, possibly via the delivery of components that promote the cell-to-cell adhesion required for the successful completion of cytokinesis. Our results also support the idea that new membrane addition, which occurs during late stage cytokinesis, is not required for furrow deepening that results from contractile band constriction.  相似文献   

10.
It has been proposed that a localized calcium (Ca) signal at the growing end of the cleavage furrow triggers cleavage furrow formation in large eggs. We have examined the possible role of a Ca signal in cleavage furrow formation in the Xenopus laevis egg during the first cleavage. We were able to detect two kinds of Ca waves along the cleavage furrow. However, the Ca waves appeared after cleavage furrow formation in late stages of the first cleavage. In addition, cleavage was not affected by injection of dibromoBAPTA or EGTA into the eggs at a concentration sufficient to suppress the Ca waves. Furthermore, even smaller classes of Ca release such as Ca puffs and Ca blips do not occur at the growing end of the cleavage furrow. These observations demonstrate that localized Ca signals in the cleavage furrow are not involved in cytokinesis. The two Ca waves have unique characteristics. The first wave propagates only in the region of newly inserted membrane along the cleavage furrow. On the other hand, the second wave propagates along the border of new and old membranes, suggesting that this wave might be involved in adhesion between two blastomeres.  相似文献   

11.
The cleavage signal transferred to the future cleavage cortex during anaphase has been proposed as "cleavage stimulus," but no signal has proved to induce cleavage furrows. The local Ca2+ transient along the cleavage furrow has been reported, but the Ca2+ source has remained unknown. To address these questions, we studied functions of Ca2+ stores in dividing newt eggs and found that microinjection of the Ca2+ store-enriched microsome fraction to the dividing newt egg induced a local extra-cleavage furrow at the injection site in 64-67% of the injected newt eggs while coinjection with inositol 1,4, 5-trisphosphate receptor (IP(3)R) antagonists heparin or anti-type 1-IP(3)R antibody clearly suppressed this induction (5 and 11% in induction rates, respectively). Injection of cerebellar microsomes from the type 1-IP(3)R-deficient mice induced extracleavage furrows albeit at a low rate (19%). Our observations strongly suggest that Ca2+ stores with IP(3)R induce and position a cleavage furrow via IP(3)-induced Ca2+ release (IICR) as Ca(2+)-releasing machinery and putative cleavage stimulus itself.  相似文献   

12.
The intracellular distribution of calcium and phosphorus during metaphase and anaphase of the first cleavage in sea urchin eggs was studied with the electron-probe microanalyzer. This study allowed a comparison of the relative concentrations of both elements on the polar and cleavage furrow regions of the membrane and on the mitotic asters and cytoplasm. The results show that in most eggs, both calcium and phosphorus are more highly concentrated in the mitotic asters than in surrounding cytoplasm during both anaphase and metaphase. Calcium is more concentrated at the furrow region than at the polar region during metaphase but not anaphase. The role of calcium during mitosis was reviewed with special reference to the theories on the formation of the cleavage furrow along the equatorial zone between two mitotic centers.  相似文献   

13.
STRUCTURAL VARIATIONS DURING MITOSIS IN THE CHICK EMBRYO   总被引:9,自引:8,他引:1       下载免费PDF全文
Selected tissues from chick embryos were fixed in 2% glutaraldehyde and 1% OsO4, both buffered at pH 7.6 with Veronal-acetate, and were embedded in Maraglas or Araldite. Two types of cell division have been noted. Generally, epithelial cells divide predominantly by a shortening of the chromosome-to-pole distance rather than by spindle elongation; mesenchymal cells undergo extensive spindle elongation. The presence of numerous continuous microtubules in cells that undergo extensive spindle elongation functionally implicates these tubules in the elongation process. In most embryonic epithelia, the cleavage furrow converges to a fixed site forming a mid-body near the anchoring desmosomes at the free surface; symmetrical furrow formation is typical of mesenchymal cells which lack desmosomes. The hypothesis of cleavage furrow formation and the fate of the mid-body that is formed during cytokinesis are discussed.  相似文献   

14.
Localization of the actin crosslinking protein, alpha-actinin, to the cleavage furrow has been previously reported. However, its functions during cytokinesis remain poorly understood. We have analyzed the functions of alpha-actinin during cytokinesis by a combination of molecular manipulations and imaging-based techniques. alpha-actinin gradually dissipated from the cleavage furrow as cytokinesis progressed. Overexpression of alpha-actinin caused increased accumulation of actin filaments because of inhibition of actin turnover, leading to cytokinesis failure. Global depletion of alpha-actinin by siRNA caused a decrease in the density of actin filaments throughout the cell cortex, surprisingly inducing accelerated cytokinesis and ectopic furrows. Local ablation of alpha-actinin induced accelerated cytokinesis specifically at the site of irradiation. Neither overexpression nor depletion of alpha-actinin had an apparent effect on myosin II organization. We conclude that cytokinesis in mammalian cells requires tightly regulated remodeling of the cortical actin network mediated by alpha-actinin in coordination with actomyosin-based cortical contractions.  相似文献   

15.
Membrane protein redistribution during Xenopus first cleavage   总被引:7,自引:5,他引:2       下载免费PDF全文
A large increase in surface area must accompany formation of the amphibian embryo first cleavage furrow. The additional membrane for this areal expansion has been thought to be provided entirely from cytoplasmic stores during furrowing. We have radioiodinated surface proteins of fertilized, precleavage Xenopus laevis embryos and followed their redistribution during first cleavage by autoradiography. Near the end of first cleavage, membrane of the outer, pigmented surface of the embryo and a short band of membrane at the leading edge of the furrow displayed a high silver grain density, but the remainder of the furrow membrane was lightly labeled. The membrane of the cleavage furrow is thus mosaic in character; the membrane at the leading edge originates in part from the surface of the zygote, but most of the membrane lining the furrow walls is derived from a source inaccessible to surface radioiodination. The furrow membrane adjacent to the outer, pigmented surface consistently showed a very low silver grain density and was underlain by large membranous vesicles, suggesting that new membrane derived from cytoplasmic precursors is inserted primarily in this location, at least during the later phase of cleavage. Radioiodinated membrane proteins and surface-attached carbon particles, which lie in the path of the future furrow, contract toward the animal pole in the initial stages of cleavage while markers in other regions do not. We suggest that the domain of heavily labeled membrane at the leading edge of the definitive furrow contains the labeled elements that are gathered at the animal pole during the initial surface contraction and that they include membrane anchors for the underlying contractile ring of microfilaments.  相似文献   

16.
The cytokinetic cleavage furrow is typically positioned symmetrically relative to the cortical cell boundaries, but it can also be asymmetric. The mechanisms that control furrow site specification have been intensively studied, but how polar cortex movements influence ultimate furrow position remains poorly understood. We measured the position of the apical and the basal cortex in asymmetrically dividing Drosophila neuroblasts and observed preferential displacement of the apical cortex that becomes the larger daughter cell during anaphase, effectively shifting the cleavage furrow toward the smaller daughter cell. Asymmetric cortical extension is correlated with the presence of cortical myosin II, which is polarized in neuroblasts. Loss of myosin II asymmetry by perturbing heterotrimeric G-protein signaling results in symmetric extension and equal-sized daughter cells. We propose a model in which contraction-driven asymmetric polar extension of the neuroblast cortex during anaphase contributes to asymmetric furrow position and daughter cell size.  相似文献   

17.
Selection of the cleavage plane during cytokinesis in dividing cells is linked to the position of the mitotic spindle. A major player in cleavage plane positioning is believed to be the anaphase central spindle and its associated signaling complex called centralspindlin, composed of MgcRacGap and MKLP1. Centralspindlin has the capacity to induce furrowing of the cell cortex by promoting the localized activation of RhoA, which in turn promotes assembly of the contractile ring. We have found a way to induce a cytokinesis-like process in unfertilized Drosophila eggs and very early embryos, when spindle structures are few and located far from invaginating egg cortex. The simple injection of a small molecule inhibitor of Cdk1/Cyclin B (either Roscovitin or RO3306) is sufficient to promote membrane invagination near the site of injection. The furrow generated is in many respects similar to a classical cleavage furrow. Actin, myosin, anillin and MKLP1 are all associated with the forming furrow, which in some cases can entirely circumscribe the unfertilized egg. A similar furrow can also be generated by the localized injection of constitutively active RhoA protein, suggesting that Cdk1 is normally an upstream inhibitor of RhoA activation. We show further that this process apparently is not associated with microtubules. Since simple localized inhibition of Cdk1 is sufficient to induce a furrow, we suggest that in real cytokinesis in normal cells, the localized downregulation of Cdk1 activity at the metaphase-anaphase transition may contribute, along with the spindle, to the positioning of the cleavage furrow.  相似文献   

18.
Calmodulin is a major cytoplasmic calcium receptor that performs multiple functions in the cell including cytokinesis. Central spindle appears between separating chromatin masses after metaphase-anaphase transition. The interaction of microtubules from central spindle with cell cortex regulates the cleavage furrow formation. In this paper, we use green fluorescence protein (GFP)-tagged calmodulin as a living cell probe to examine the detailed dynamic redistribution and co-localization of calmodulin with central spindle during cytokinesis and the function of this distribution pattern in a tripolar HeLa cell model. We found that calmodulin is associated with spindle microtubules during mitosis and begins to aggregate with central spindle after anaphase initiation. The absence of either central spindle or central spindle-distributed calmodulin is correlated with the defect in the formation of cleavage furrow, where contractile ring-distributed CaM is also extinct. Further analysis found that both the assembly of central spindle and the formation of cleavage furrow are affected by the W7 treatment. The microtubule density of central spindle was decreased after the treatment. Only less than 10% of the synchronized cells enter cytokinesis when treated with 25 microM W7, and the completion time of furrow regression is also delayed from 10 min to at least 40 min. It is suggested that calmodulin plays a significant role in cytokinesis including furrow formation and regression, The understanding of the interaction between calmodulin and microtubules may give us insight into the mechanism through which calmodulin regulates cytokinesis.  相似文献   

19.
The inner centromeric protein (INCENP) and other chromosomal passenger proteins are known to localize on the cleavage furrow and to play a role in cytokinesis. However, it is not known how INCENP localizes on the furrow or whether this localization is separable from that at the midbody. Here, we show that the association of Dictyostelium INCENP (DdINCENP) with the cortex of the cleavage furrow involves interactions with the actin cytoskeleton and depends on the presence of the kinesin-6-related protein Kif12. We found that Kif12 is found on the central spindle and the cleavage furrow during cytokinesis. Kif12 is not required for the redistribution of DdINCENP from centromeres to the central spindle. However, in the absence of Kif12, DdINCENP fails to localize on the cleavage furrow. Domain analysis indicates that the N terminus of DdINCENP is necessary and sufficient for furrow localization and that it binds directly to the actin cytoskeleton. Our data suggest that INCENP moves from the central spindle to the furrow of a dividing cell by a Kif12-dependent pathway. Once INCENP reaches the equatorial cortex, it associates with the actin cytoskeleton where it then concentrates toward the end of cytokinesis.  相似文献   

20.
It has recently been demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP2) is localized at the cleavage furrow in dividing cells and its hydrolysis is required for complete cytokinesis, suggesting a pivotal role of PIP2 in cytokinesis. Here, we report that at least three mammalian isoforms of phosphoinositide-specific phospholipase C (PLC), PLCdelta1, PLCdelta3 and PLCbeta1, are localized to the cleavage furrow during cytokinesis. Targeting of the delta1 isoform to the furrow depends on the specific interaction between the PH domain and PIP2 in the plasma membrane. The necessity of active PLC in animal cell cytokinesis was confirmed using the specific inhibitors for PIP2 hydrolysis. These results support the model that activation of selected PLC isoforms at the cleavage furrow controls progression of cytokinesis through regulation of PIP2 levels: induction of the cleavage furrow by a contractile ring consisting of actomyosin is regulated by PIP2-dependent actin-binding proteins and formation of specific lipid domains required for membrane separation is affected by alterations in the lipid composition of the furrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号