首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A temperature-sensitive cell cycle mutant of the BHK cell line   总被引:19,自引:0,他引:19  
A temperature-sensitive growth mutant derived from the BHK 21 cell Line, ts AF8, was found to have greatly reduced DNA synthesis at the nonpermissive temperature. This reduction is mainly due to a decrease in the frequency of cells synthesizing DNA. Upon shift up, ts AF8 becomes blocked in the G1 phase of the cell cycle. The cells acquire elevated cAMP levels and a unimodal distribution of DNA content, equivalent to that of G1 cells at the permissive temperature, Ts AF8 cells blocked at the G1/S boundary with hydroxyurea will enter S when shifted to the nonpermissive temperature. On the other hand, ts AF8 cells arrested m G1 by serum deprivation and shifted to the nonpermissive temperature at the moment of serum addition do not enter S, while those synchronized by isoleucine deprivation and shifted at the time of isoleucine addition will enter S. These data suggest that the cycle arrest point of the ts AF8 mutation is located in G1 between the blocks induced by serum starvation and isoleucine deprivation. The reduction in DNA synthesis caused by the ts AF8 mutation is not reversed by infection or transformation with Polyoma virus. Mitochondrial DNA continues to be synthesized at wild-type levels at the nonpermissive temperature.  相似文献   

2.
Late G1 amino acid restriction point in human dermal fibroblasts   总被引:2,自引:0,他引:2  
Human dermal fibroblasts arrested in G0 by maintenance in medium supplemented with 0.1% serum were not restimulated to divide when fresh medium containing 10% dialyzed serum but lacking group B amino acids (cystine, isoleucine, lysine, phenylalanine and tyrosine) was added. Unlike rodent cells, the addition of fresh serum-supplemented medium lacking only isoleucine did not cause a growth arrest. The amino acid sensitive growth arrest in human fibroblasts was dependent both on presynchronization in G0 as well as a prestarvation for amino acids prior to stimulation with high serum. When cells were restimulated in the absence of amino acids, they arrested predominantly in G1, although a small percentage of cells entered early S phase. When medium containing a complete complement of amino acids was then added, cells initiated DNA synthesis following a minimum lag of 2-3 hr. Growth arrested cells initiated DNA synthesis even when complete unsupplemented medium was added, although the addition of high concentrations of insulin or 10% serum increased the rate of entry.  相似文献   

3.
Three different temperature sensitive mutants derived from the Syrian hamster cell line BHK 21 were found to have greatly reduced DNA synthesis at the non-permissive temperature. These mutants are distinct by complementation analysis and behave at the non-permissive temperature as cell cycle traverse defective mutants. Microfluorometric analysis of mutant populations arrested at the non-permissive temperature shows an accumulation of cells with G1 DNA content. Mutants ts 13 and ts HJ4 synchronized in G1 by serum or isoleucine deprivation and shifted to the non-permissive temperature at the time of release do not enter the S phase, while in the case of mutant ts 11 preincubation at the non-permissive temperature before release is required to completely prevent its entry into S. Ts 13 and ts 11 are able to traverse the S phase at the non-permissive temperature when synchronized at the boundary G1/S; in this case, preincubation of ts 11 at the non-permissive temperature before release does not affect the ability of these cells to perform DNA synthesis. On the other hand, ts HJ4 appears to traverse S only partially when tested under similar conditions. Temperature shift experiments of mutant populations at different times after isoleucine synchronization suggest that ts 13 and ts 11 are blocked at the non-permissive temperature in early G1, whereas ts HJ4 is probably affected near the initiation of DNA synthesis, or in some early S function.  相似文献   

4.
Chlamydiae have amino acid requirements for growth in tissue culture as defined by those amino acids whose individual omission from the growth medium prevents chlamydial multiplication. We have tested the hypothesis that this inhibition of growth arises as a result of antagonism between particular amino acids such that inhibition occurs when the concentration of one amino acid is reduced in the presence of the antagonist amino acid at high concentration. Using the Chlamydia psittaci strain guinea pig inclusion conjunctivitis (GPIC), in the presence of cycloheximide, the requirement for valine was abrogated by the simultaneous omission of isoleucine, that for phenylalanine by simultaneous omission of tryptophan and that for leucine by simultaneous omission of isoleucine plus valine. The antagonism shown between leucine and isoleucine plus valine appears to be unique among bacteria. In the absence of cycloheximide, GPIC had an additional need for tryptophan, tyrosine and isoleucine; these amino acid requirements were shown for both infected McCoy, HeLa and BHK cells. The results are consistent with a mechanism for regulation of parasite growth which depends on the balance of amino acid concentrations in the extracellular environment.  相似文献   

5.
The synthesis of histones and DNA was examined in BHK cells arrested in G1 by isoleucine starvation and in cells progressing into the S phase upon isoleucine refeeding. Approximately 2–3% of the cells were not arrested in G1 and synthesized DNA. The rate of synthesis of DNA and nucleosomal histones observed in cells starved for isoleucine could be accounted for by the presence of these asynchronous cells. Synthesis of H1 histones by cells in G1, however, was 3 times that of the nucleosomal histones and approximately 15% of the rate of H1 histone synthesis in mid-S. Upon entry into S, the histones were synthesized in the same molar ratio in which they are present in chromatin. The possible biological significance of H1 histone synthesis in G1 cells and its implications for the regulatory mechanisms controlling histone synthesis are discussed.  相似文献   

6.
Suspension-cultured mouse plasmacytoma cells (MPC-11) were accumulated in the late G1 phase by exposure to isoleucine-deficient medium for 20- 24 h. The arrested culture was fed with complete medium enabling the cells to continue the cell cycle synchronously, undergo mitosis, and enter a second cycle of growth. This method of synchronization left the protein-synthesizing ability intact as judged by the polysome profile and the capacity of the cells to incorporate labeled amino acids into protein after the restoration of isoleucine. After incubation in isoleucine-deficient medium and the addition of isoleucine to the culture, cells entered the S phase after a short lag, as judged by [3H]thymidine incorporation into nucleic acid and by spectrophotometric measurement of nuclear DNA. The cells were in mitosis between 12 and 18 h as judged by the increase in cell count and analysis of cell populations on albumin gradients. Synthesis and secretion of light- chain immunoglobulin were maximal in the late G1/early S phase of the first cycle. During late S phase, G2 phase, and mitosis, both synthesis and secretion were observed to be at a low level; however, immediately after motosis the cells which then entered the G1 phase apparently commenced synthesis of light chain immunoglobulin straight away, although secretion of labeled material remained at a low level.  相似文献   

7.
The in vitro relationship between nutritional factors, proliferative status of tumor cells, and the cytotoxic action of cytosine arabinoside (ara-C) was investigated. The reduction in the concentration of only one essential amino acid, L-isoleucine, in the growth medium of A(T1)Cl-3 hamster fibrosarcoma cells decreased DNA synthesis in this cell population and slowed the rate of progression of G1 phase cells into S phase of the cell cycle. The complete omission of isoleucine from the growth medium blocked the progression of G1 phase cells into S phase and prevented the cytotoxic action of ara-C. The addition of isoleucine to the isoleucine-deprived cells permitted these cells to enter the S phase and restored their sensitivity to the cytotoxic action of ara-C. When G1 phase cells were placed in a medium containing reduced levels of all the amino acids and vitamins there was a prolongation of the G1 phase. Since medium with low levels of amino acids produced a delay in the entry of G1 phase cells into the S phase, the time interval in which these cells were most sensitive to the cytotoxic action of ara-C was different for G1 phase cells placed in medium with adequate levels of all the amino acids. These in vitro data indicate that nutritional factors can markedly effect the proliferation of tumor cells and the cytotoxic action of ara-C.  相似文献   

8.
The effect of omission of individual amino acids from growth medium on the multiplication of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) in cycloheximide-treated McCoy cells has been examined. Marked differences were observed in the amounts of particular amino acids required for normal chlamydial multiplication: omission of either leucine, phenylalanine or valine completely inhibited multiplication, whereas absence of any one of another 10 amino acids had no effect on numbers of cells infected. Threshold concentrations of 80, 80 and approx. 8 nmol ml-1 for leucine, valine and phenylalanine, respectively, were needed for normal chlamydial multiplication. These requirements could not be related either to unusually high content in the whole organism, to degradation in the medium, or, from studies with leucine, to deficient association of leucine with host cells. Leucine deprivation at late stages of the developmental cycle also appeared to regulate multiplication. Possible mechanisms responsible for these effects are discussed.  相似文献   

9.
Mitochondrial protein synthesis was measured in line CHO cells after phases of the cell cycle were synchronized by isoleucine deprivation or mitotic selection. Maximum incorporation of [3H] leucine into mitochondrial polypeptides occurred within 2 hours after isoleucine was added to initiate G1 traverse. In cells synchronized in G1 by mitotic selection, the rate of mitochondrial protein synthesis was fairly constant throughout the cell cycle. SDS-polyacrylamide gel electrophoretic profiles of labeled mitochondrial polypeptides were similar in cells synchronized by either isoleucine deprivation or mitotic selection. Obvious changes in the distribution of polypeptides were not detected during various phases of the cell cycle. The increased rate of incorporation of [3H] leucine into mitochondrial polypeptides after reversal of G1-arrest may indicate that mitochondrial protein synthesis and possibly mitochondrial biogenesis are synchronized in CHO cells deprived of isoleucine.  相似文献   

10.
Parameters are described for reproducible S phase synchrony of Chinese hamster ovary cells growing in monolayer, adapting a method described by Tobey & Crissman [1] for CHO cells growing in suspension culture. Cells are collected at the G1/S boundary in hydroxyurea after reversal of an early G1 block induced by isoleucine deprivation. The entire population enters the S period within 60 min after removal of hydroxyurea and proceeds through the S period with minimal decay of synchrony, as evidenced by autoradiographic and rate studies on [3H]TdR uptake. In addition, a method is described for obtaining cells synchronized during two successive S periods. The presence of hydroxyurea during G1 does not measurably affect the rate of uptake of [3H]uridine or [3H]leucine into TCA-insoluble material; however, cultures released from the hydroxyurea block at 10 h incorporate slightly more [3H]uridine (but not [3H]leucine) in the next 6 h than cultures maintained in hydroxyurea over this interval. Delaying entry into S with hydroxyurea for as long as 15 h does not significantly change the initial rate or duration of DNA synthesis upon removal of hydroxyurea, arguing against the build-up of substances responsible for initiation of replicons. Furthermore, if DNA synthesis is delayed with hydroxyurea in one cell cycle, a constant minimal interval of 15 h elapses before the population enters into the next S phase, suggesting that the timing of the S period is coupled to the timing of the previous S.  相似文献   

11.
An isoleucine arrest point in G1 was determined by two methods for CHO and 3T3 cells. In the first method the fraction of cells entering S after isoleucine deprivation was assessed by [3H]thymidine labelling and autoradiography. In the second method cells entering S after isoleucine deprivation were identified by double-label autoradiography using [3H] and [14C]thymidine. From the fraction of cells entering S, determined by the two methods, the arrest point in G1 (and entry into G0) is located within the last 40 min of G1.  相似文献   

12.
Du Y  Meng Q  Zhang Q  Guo F 《Amino acids》2012,43(2):725-734
There has been a growing interest in controlling body weight by increasing dietary levels of leucine recently. By contrast, we have focused on studying the effect of deficiency of branched-chain amino acids (BCAAs) leucine on lipid metabolism. We previously have shown that mice fed a leucine-deficient diet for 7 days exhibit significant changes in lipid metabolism as demonstrated by suppressed lipogenesis in the liver and increased fat mobilization in white adipose tissue, the latter of which was found to be caused by increased lipolysis in WAT and uncoupling protein 1 expression in brown adipose tissue. The goal of our current study is to investigate whether the above effects of leucine deficiency can be generalized to the deficiency of other BCAAs including valine and isoleucine. In our current study, we show that valine or isoleucine deficiency has similar effects on reducing fat mass to leucine deprivation, in a similar manner as those observed during leucine deprivation.  相似文献   

13.
Skeletal muscle grows at a very rapid rate in the neonatal pig, due in part to an enhanced sensitivity of protein synthesis to the postprandial rise in amino acids. An increase in leucine alone stimulates protein synthesis in skeletal muscle of the neonatal pig; however, the effect of isoleucine and valine has not been investigated in this experimental model. The left ventricular wall of the heart grows faster than the right ventricular wall during the first 10 days of postnatal life in the pig. Therefore, the effects of individual BCAA on protein synthesis in individual skeletal muscles and in the left and right ventricular walls were examined. Fasted pigs were infused with 0 or 400 micromol x kg(-1) x h(-1) leucine, isoleucine, or valine to raise individual BCAA to fed levels. Fractional rates of protein synthesis and indexes of translation initiation were measured after 60 min. Infusion of leucine increased (P < 0.05) phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein-1 and increased (P < 0.05) the amount and phosphorylation of eIF4G associated with eIF4E in longissimus dorsi and masseter muscles and in both ventricular walls. Leucine increased (P < 0.05) the phosphorylation of ribosomal protein (rp)S6 kinase and rpS6 in longissimus dorsi and masseter but not in either ventricular wall. Leucine stimulated (P < 0.05) protein synthesis in longissimus dorsi, masseter, and the left ventricular wall. Isoleucine and valine did not increase translation initiation factor activation or protein synthesis rates in skeletal or cardiac muscles. The results suggest that the postprandial rise in leucine, but not isoleucine or valine, acts as a nutrient signal to stimulate protein synthesis in cardiac and skeletal muscles of neonates by increasing eIF4E availability for eIF4F complex assembly.  相似文献   

14.
Kinetics of G1 transit following brief starvation for serum factors   总被引:7,自引:0,他引:7  
Growing fibroblasts such as 3T3 cells are well-known to enter a quiescent state (G0) after many hours of serum deprivation. They emerge from G0 upon readdition of serum and initiate DNA synthesis about 12 h later. In this paper, we analyzed the effects of brief periods of serum deprivation on the ability of cells in G1 to initiate DNA synthesis. Exponentially growing 3T3 fibroblasts were briefly deprived of serum and their progress into S phase was monitored by autoradiography of labeled nuclei. When 10% serum was added back to cultures deprived of serum for a few hours, the progress of G1 cells into S phase was delayed for intervals far in excess of the length of the serum deprivation. Longer serum starvations resulted in longer excess delays. Several transformed 3T3 derivatives were markedly less sensitive to this serum-induced G1 regression following deprivation. When 1 microgram/ml insulin (rather than 10% serum) was added back to the starved cultures, the G1 cells entered S phase immediately. Delay in S phase entry following serum readdition was completely prevented if insulin (and, to a lesser extent, EGF) was present during the starvation, was diminished if a lower serum concentration was used for readdition, and was partially abolished if 10% serum plus insulin was restored to the cultures. The above results, then, suggest that serum deprivation sensitizes the cells to an unidentified serum component which sets the cells back in G1, unless insulin is present to maintain the flow of cells into S.  相似文献   

15.
The effects of essential amino acids on albumin synthesis by a mouse hepatoma cell line have been investigated. The amino acids tested were tryptophan, phenylalanine, histidine, isoleucine and leucine. Cellular rates of synthesis (molecules albumin/cell per min) were determined from rates of [3H]leucine incorporation into immunoprecipitable albumin in the culture medium. The effects of amino acids on albumin synthesis fall into three distinct groups. The concentration of tryptophan producing half-maximal synthesis is 4 micronM. The corresponding concentration for leucine is 100 micronM. Histidine, phenylalanine and isoleucine were very similar, the half-maximal concentrations being approximately 15 micronM. The concentrations of amino acids producing half-maximal synthesis correlate directly with the amino acid composition of albumin. The levels of these essential amino acids necessary to saturate albumin synthesis have been compared with amino acid levels in normal plasma.  相似文献   

16.
Stringent and relaxed strains of E. coli subjected to isoleucine starvation were examined by follow-wing the incorporation of 3H-thymidine into chromosomal DNA. After valine treatment to trigger an isoleucine deprivation (p)ppGpp is synthesized in the stringent strain only. Remarkable differences in the morphology of the amino acid starved cells of the stringent and relaxed strains can be observed. Upon isoleucine limitation 3H-thymidine incorporation into DNA is reduced in both strains, but this inhibition is remarkably delayed in the relaxed strain. Our result show that the reduction of chromosomal DNA synthesis during amino acid limitation occurs also without ppGpp, but in the presence of ppGpp this process is accelerated.  相似文献   

17.
It has been known for several years that DNA replication and histone synthesis occur concomitantly in cultured mammalian cells. Normally all five classes of histones are synthesized coordinately. However, mouse myeloma cells, synchronized by starvation for isoleucine, synthesize increased amounts of histone H1 relative to the four nucleosomal core histones. This unscheduled synthesis of histone H1 is reduced within 1 h after refeeding isoleucine, and is not a normal component of G1. The synthesis of H1 increases coordinately again with other histones during the S phase. The DNA synthesis inhibitors, cytosine arabinoside and hydroxyurea, block all histone synthesis in S-phase cells. The levels of histone H1 mRNA, relative to the other histone mRNAs, is increased in isoeleucine-starved cells and decreases rapidly after refeeding isoleucine. The increased incorporation of histone H1 is at least partially due to the low isoleucine content of histone H1. Starvation of cells for lysine resulted in a decrease in H1 synthesis relative to core histones. Again the ratio was altered on refeeding the amino acid. 3T3 cells starved for serum also incorporated only H1 histones into chromatin. The ratio of different H1 proteins also changed. The synthesis of the H10 protein was predominant in G0 cells, and reduced in S-phase cells. These data indicate the metabolism of H1 is independent of the other histones when cell growth is arrested.  相似文献   

18.
Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([3H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([3H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9–12 h after addition of isoleucine and virtually all [3H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G1 because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.  相似文献   

19.
除草剂普杀特(Imazethapyr)对玉米根尖蛋白质和DNA合成的影响刘支前(北京农业大学农业应用化学系,北京100094)关键词:普杀特,玉米,蛋白质,DNA80年代美国氰胺公司开发的咪唑淋酮类除草剂,由于其高效低毒、杀草谱广,又因对某些农作物具...  相似文献   

20.
Clones of virogenic simian virus 40 (SV40)-transformed hamster kidney cells were exposed to medium deficient in the essential amino acids leucine, arginine, or methionine. Infectious virus was induced after deprivation periods of from 24 to 32 hr. The highest yields of infectious SV40 were obtained from cultures deprived for 3 to 4 days. Infectious virus was also induced in cells that were treated with the metabolic inhibitor cycloheximide. Pulse labeling experiments revealed that both protein synthesis and deoxyribonucleic acid (DNA) synthesis were inhibited by concentrations of cycloheximide which were effective for virus induction. It is suggested that inhibition of protein synthesis by either amino acid deprivation or by cycloheximide was responsible for the induction of infectious virus from virogenic cells. We postulate that the inhibition of protein synthesis caused a temporary inhibition of DNA synthesis which resulted in the induction of infectious virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号