首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Because the secretion of endolymph has been localized in the ampullar part of the frog semicircular canal, we attempted to determine by cytochemical methods the ultrastructural localization of two enzymes that are assumed to play a role in endolymph secretion: carbonic anhydrase and adenylate cyclase. Functionally, the epithelium of the frog semicircular canal can be schematically divided into three areas: sensory (crista ampullaris), secretory (dark cells), and non-sensory and nonsecretory (transitional and undifferentiated cells) areas. Carbonic anhydrase activity was widely distributed in dark cells. Dark cell labeling disappeared in the presence of acetazolamide. The other cells of the canal did not show any carbonic anhydrase labeling except for the supporting cells of the sensory cells. Adenylate cyclase activity was found on the basolateral and apical membranes of dark cells, and on the apical membrane of sensory cells; weak labeling was also observed in the other epithelial cells. In the apical membrane of the dark cells, adenylate cyclase labeling was dependent on the presence of vasotocin, the frog antidiuretic hormone. The dark cells of the frog semicircular canal thus possess the enzyme equipment needed for the secretion of endolymph and its possible hormonal regulation.  相似文献   

2.
Earlier morphological studies of the epithelial structure in the semicircular canals of mammals have focused on the sensory cells of the crista ampullaris. This report draws attention to the fact that there exist at least seven further cell types in the horizontal ampulla walls of pigeon with various functions; the role of ion- and H2O-transporting epithelial cells is dealt with here in detail. While the dark cells appear to play a decisive role in the regulation of ionic composition, the cells in the planum semilunatum may transport H2O and assist in the regulation of endolymph volume. In addition, protein-secreting structures are located in the apical region of the cells of the planum semilunatum. The question whether the proteins are dispersed in the endolymph or contribute to cupula formation remains unclear. The morphology and possible functions of these two cell types are discussed on the basis of electron microscopic results.  相似文献   

3.
We examined the permeability of the subcupular space for endolymph flow in the pigeon. A new technique was developed in which nanoparticles consisting of dextran magnetite were attracted by use of a magnet, instead of injecting a dye solution. The method was revealed to prevent an excess pressure application by the injection of dye solution. The Berlin blue color resulting from the dextran magnetite nanoparticles was found mainly within the subcupular space contacting with the sensory hairs. Further formation of the Berlin blue was found within the sensory cells. The result supports the idea that the fluid passes through the subcupular space.  相似文献   

4.
5.
A dominant mutation was generated in transgenic mice as a consequence of insertional mutation. Heterozygous mice from transgenic line 9257 (Tg(9257)) are hyperactive with bidirectional circling behavior and have a distinctive facial appearance due to hypoplasia of the nasal bone. Morphological analysis of the inner ear revealed asymmetric abnormalities of the horizontal canal and flattening or invagination of the crista ampullaris, which can account for the circling behavior. The sensory epithelium appeared to be normal. The transgene insertion site was localized by in situ hybridization to the B1 band of mouse chromosome 18. Genetic mapping in an interspecific backcross demonstrated the gene order centromere--Tg(9257)--8.8 +/- 3.4--Grl-1, Egr-1, Fgf-1, Apc--14.7 +/- 4.3--Pdgfr. The phenotype and the mapping data suggest that the transgene may be inserted at the Twirler locus. Homozygosity for the transgene results in prenatal lethality, but compound heterozygotes carrying the Tw allele and the transgene are viable. The function of the closely linked ataxia locus is not disrupted by the transgene insertion. This insertional mutant will provide molecular access to genes located in the Twirler region of mouse chromosome 18.  相似文献   

6.
Rhesus monkeys have been kept in horizontal position under klinostatic or antiorthostatic hypokinetic conditions for 7 and 19 days. Using scanning electron microscope, studies were made of the otolithic membrane of the utricle, the receptor surface of the utricle, crista ampullaris of the lateral semicircular canals, the organ of Corti, the stria vascularis and spiral ligament. No significant differences were found between control and experimental animals.  相似文献   

7.
The statocyst shows a remarkable combination of features of decapods and octopods confirming that Vampyroteuthis is a relic somewhere near the ancestor of both groups. The lining of the statocyst separates from the outer wall, forming an inner sac, filled with endolymph, surrounded by perilymph. This is the condition found in octopods, never in decapods. The macula is partly divided into a macula princeps and macula neglecta, as in decapods but never in octopods. There are numerous statoconia, but no large statolith has been seen. The crista has four parts as in decapods, but they are not sharply separated. There are numerous small anticristae, with the general form found in decapods, differentiated into pegs and hooks.
The wall of the inner sac contains numerous hair cells. These hairs protrude between the epithelial cells. The bases of the cells are drawn out into fine processes, presumably some dendritic and some axonal. There is thus a plexus of nerve fibres all over the wall, communicating with the crista nerve.
There is a very large posterior sac of unknown function, lying behind the crista. It contains only one large anticrista and the opening of Kölliker's canal, which is very large.  相似文献   

8.
We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.  相似文献   

9.
Potassium ions are a prerequisite for the development and regulation of sensory cell stimulation in the inner ear. From the potassium-rich endolymph the ions flow into the sensory cells apically and are released basolaterally. After transport pathways of various lengths potassium is released again into the endolymph - in the cochlea by marginal cells of the stria vascularis, in the vestibular labyrinth by dark cells. While this long recycling pathway is relatively well-known in the cochlea, few studies have been conducted on the semicircular canal ampullae (SCCA) where its morphological basis is largely unknown. According to the present electron microscopic findings, potassium ions are initially released into the extracellular space during stimulation of the sensory cells and then absorbed by supporting and light cells. Finally they are transported transcellularly over numerous very long gap junctions into the region of the dark cells. From here they move to an extracellular compartment, which is more or less completely sealed off basally by basal plates of the light cells. Apically the intercellular space between light and dark cells is sealed by junctional complexes. This newly identified space in the SCCA corresponds to the extracellular compartment between the marginal and intermediate cells in the stria vascularis. At both sites, the cochlea and the SCCA, this probably serves as a regulatory valve, reservoir or storage space, particularly for potassium ions. It is likely that the different morphology of the ion transport pathways is related to the different flow levels of potassium ions expressed by the different levels of the so-called endocochlear potential and concomitant movement of other ions in the cochlea and SCCA.  相似文献   

10.
The vector equation for the general motion of a body in an inertial system is used to analyze the accelerations in the semicircular canals of the cat when the head undergoes rotation about a vertical axis only, rotation about the naso-occipital axis only, and both rotations simultaneously. The corresponding mean forces and mean pressures in the endolymph are calculated by means of a closed line integral along each canal circumference. The importance of the area of the semicircular canal and of its orientation in space become evident. One can see through this mathematical analysis that the input pattern received by the labyrinthine system depends on a set of well-specified geometrical and mechanical conditions, which must be precisely evaluated in order to interpret the nystagmic outputs.  相似文献   

11.
Short latency vestibular evoked potentials (VsEPs) to angular acceleration impulses (maximal intensity 20,000°/sec2, rise time 1.5–3 msec) were recorded by skin electrodes in cats before and after various surgical procedures. Under general anesthesia, the animals underwent unilateral labyrinthectomy and the VsEPs in response to stimulation of the remaining inner ear in the plane of the lateral semicircular canal (SCC) with the head flexed 20°–25° were recorded as a baseline. The lateral SCC was then selectively obliterated near its ampulla. This induced major changes in the VsEPs recorded in response to stimulation of the remaining inner ear in this plane: the first 2 VsEP waves were absent, and only longer latency, smaller amplitude waves were present in response to both clockwise and counterclockwise stimulation. On the other hand, obliteration of the anterior and posterior SCCs and, in addition, destruction of both maculae were without major effects on the first 2 VsEP waves in response to excitatory stimulation. The results confirm that when the head is flexed 20°–25° and stimulated with angular acceleration impulses in the horizontal plane, the major site of initiation of the VsEPs in cats and probably in man is the crista ampullaris of the lateral SCC.  相似文献   

12.
The functional dependence of the semicircular canal upon its physical dimensions was evaluated by measuring the internal radius (r), the radius of curvature (R) and the cupula radius (rC) of the posterior canal in 10 freshly dissected frog labyrinths. These values have been compared to the same parameters of the cat labyrinth. The coefficients I, B, K in the Steinhausen equation were determined for both animals. The A ratio between cupula deflection and endolymph displacement was also calculated by utilizing the Bernard equation. The A ratio is three times larger in the frog than in the cat. It follows that if the same acceleration produces similar endolymph displacements in the posterior canal of both animals, the cupula deflection will be larger in the frog. The solution of the Steinhausen equation in the presence of a constant acceleration, however, reveals that the same stimulus intensity will result in a larger endolymph displacement in the cat posterior canal; similarly, the endolymph displacement directly depends on the duration of the stimulating period in both animals. Contrary to the Bernard assumption, these effects generate a G ratio (psi frog/psi cat) which is less than the Q ratio (A frog/A cat). Moreover, G decreases on increasing the duration of the stimulating period. For stimuli of short duration the semicircular canal of a small animal is expected to exhibit a higher sensitivity than that of a larger one. However, the definitive primary afferent discharge will be largely controlled by the receptor/generator potential properties.  相似文献   

13.
14.
The effect of rapid changes in K+ concentration (from 0 up to 5 mM) in the perilymphatic fluid was tested on ampullar receptor activity in isolated semicircular canals of the frog. The effects of the different K-concentrations were evaluated by recording both the transepithelium potentials (Adc) and the postsynaptic potentials (EPSPs and spikes discharge) led off from the ampullar nerve. The results have clearly demonstrated that crista ampullaris sensory cells are extremely sensitive to K-changes (+/- 0.25 mM). In fact both transepithelial potentials and discharge activity (EPSPs and propagated spikes) of first order vestibular neurones may be decreased or increased by decreasing or increasing the K-concentration in the outer fluid. The possible mechanism of action of K+ on ampullar receptors is discussed.  相似文献   

15.
Actin filaments in sensory hairs of inner ear receptor cells   总被引:15,自引:11,他引:4       下载免费PDF全文
Receptor cells in the ear are excited through the bending of sensory hairs which project in a bundle from their surface. The individual stereocilia of a bundle contain filaments about 5 nm in diameter. The identity of these filaments has been investigated in the crista ampullaris of the frog and guinea pig by a technique of decoration with subfragment-1 of myosin (S-1). After demembranation with Triton X-100 and incubation with S-1, "arrowhead" formation was observed along the filaments of the stereocilia and their rootlets and also along filaments in the cuticular plate inside the receptor cell. The distance between attached S-1 was 35 nm and arrowheads pointed in towards the cell soma. It is concluded that the filaments of stereocilia are composed of actin.  相似文献   

16.
Balance is achieved and maintained by a balance system called a labyrinth that is composed of three semicircular canals and the otolith organs that sense linear gravity and acceleration. Within each semicircular canal, there is a gelatinous structure called the cupula, which is deformed under the influence of the surrounding endolymph. One of the balance disorders is benign paroxysmal positional vertigo, and one of the pathological conditions that have been identified as possible causes of this syndrome is canalithiasis—disturbance of the endolymph flow and cupular displacement caused by the free-moving otoconia particles within the lumen of the canal. Analysis of phenomena occurring within the semicircular canal can help to explain some balance-related disorders and the response of the vestibular system to external perturbations under various pathological conditions. Numerical simulations allow a study of the influence of a wide range of factors, without the need to perform experiments and clinical examinations. In case of canalithiasis, an accurate explanation and tracking of the motion of otoconia particles in vivo is obviously nearly impossible. In this study, a numerical model was developed to predict the motion of otoconia particles within the semicircular canal and the effect of the endolymph flow and particles on the deformation of the cupula.  相似文献   

17.
Summary Neurotransmitters involved in the vestibular system are largely uncharacterized. On the basis of results of earlier electrophysiological and immunohistochemical experiments, glutamate and gamma-amino-butyric acid (GABA) have been proposed in both mammalian and non-mammalian species as afferent transmitters between the sensory cell and the afferent dendrite. GABA is also suspected to act as an efferent neurotransmitter in the cochlea. We describe in this study the immunocytochemical localization of GABA within the vestibular end organs in the guinea pig. GABA immunoreactivity was found in the calyceal nerve endings surrounding type I hair cells of the vestibular epithelia. The most significant labelings were obtained in the crista ampullaris. Labeling was more difficult to observe in the utricular and saccular macula. These results contribute to the recent proposal that the calyx has a secretory function, and suggest that GABA may have a modulatory influence upon the type I hair cells.  相似文献   

18.
We used the simple method of direct cytofluorescence to detect the presence of the aminoglycoside, streptomycin, in the inner ear after its systemic administration. In the cochlea, fluorescence was observed in the organ of Corti, the spiral ganglion, the nerve fibres, the vascular stria and Reissner's membrane; in the vestibulum, fluorescence was seen in the crista ampullaris and the planum semilunatum. The localization of the drug was related to the distribution of its specific receptor, triphosphoinositide (TPI); therefore, it is reasonable to assume that aminoglycosides exert their toxic effects by binding to TPI.  相似文献   

19.
In order to clarify the occurrence, distribution and possible role of apoptosis during inner ear development, the ultrastructural aspects (by TEM) (at 9-19 incubation day and 1 day after hatching) and the distribution of the apoptotic phenomenon (by the TdT-mediated dUTP nick end-labeling technique), were studied in the crista ampullaris of chick embryo at 5-19 days of incubation to hatching and of postnatal 1-day old chick. We found, in the sensorial epithelium, dark supporting cells in chick embryos and mainly dark hair cells in postnatal chicks, both with ultrastructural features consistent with those of apoptosis. The presence of apoptotic phenomena was confirmed by the TUNEL technique. According to our findings, it is hypothesized that apoptosis in the inner ear may be involved: 1) at first, in macroscopic remodelling of the membranous labyrinth in early developmental stages, 2) later, in the correct differentiation of the hair and of the supporting cells, leading to characteristic cellular pattern formation and 3) finally, in physiological cell turnover of the postnatal chicken sensorial epithelium of the crista.  相似文献   

20.
Exencephaly was induced in mouse fetuses by maternal injection of cadmium chloride (CdCl2) on day 7 of gestation. The heads of exencephalic, nonexencephalic experimental, and control fetuses were embedded in paraffin and sections were stained with hematoxylin and eosin. Compared to those of controls, the ears of the exencephalic fetuses were smaller (microtia) and low set. The meatal plug representing the external auditory canal was thick, variously branched, and often directed inferiorly. Usually, there were just two ossicles. The stapedial artery, facial nerve, and stapedius muscle were hypoplastic; the tensor tympani was small or absent. There were 1.0 to 2.0 turns of the cochlea in contrast to 2.5 turns in the controls. The organ of Corti was underdifferentiated; the spiral ganglion had fewer cells. In the control, the long axes of the anterior and posterior semicircular ducts were at right angles to each other and in vertical planes, but in the exencephalics, they tended more laterally towards the horizontal plane. The differentiation of the cristae ampullares and maculae was also severely affected. In several specimens, the entire membranous labyrinth had been distended; these labyrinths also had unusual epithelial infoldings. In cadmium-treated nonexencephalic fetuses, the external ears were normal and appropriate to the body size; five of them were examined histologically; in all, the five middle ear contents were hypoplastic; in three, the cochlea had a maximum of two turns and the organ of Corti, crista ampullaris, and macula were hypoplastic. By an analogy to abnormalities of mutants with neural tube defects, it is suggested that the exencephaly induced by cadmium might affect the differentiation of the ear. Partial involvement of the ear in nonexencephalic experimental embryos may be the result of direct action of cadmium during critical stages of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号